简单题15分

如果某个数 K 的平方乘以 N 以后,结果的末尾几位数等于 K,那么就称这个数为“N-自守数”。例如 3×92​2​​=25392,而 25392 的末尾两位正好是 92,所以 92 是一个 3-自守数。
本题就请你编写程序判断一个给定的数字是否关于某个 N 是 N-自守数。
输入格式:
输入在第一行中给出正整数 M(≤20),随后一行给出 M 个待检测的、不超过 1000 的正整数。
输出格式:
对每个需要检测的数字,如果它是 N-自守数就在一行中输出最小的 N 和 NK​2​​ 的值,以一个空格隔开;否则输出 No。注意题目保证 N<10。
输入样例:
3
92 5 233
输出样例:
3 25392
1 25
No

思路:题目本身不难,要看清题目,我这里采用的是将乘出来的那个数取余去和那个数比较,看是否相同,余数是用循环来求得,感觉我这个代码还是挺简单,容易懂得。

#include<stdio.h>
#include<math.h>
int main(){
   
	int i,M,N,K,total,flag,temp;
	int count=0;
	scanf("%d",&M);
	while(M--){
   
		count = 0;
		scanf("%d",&K);
		temp = K;	//采用临时变量,保证后面K输出的时候是输入的值
		while(temp!=0){
   
			count++;	//求输入的数有几位 
			temp /= 10; 
		}
		for (N=1;N<10;N++){
   
			total = N*K*K;
			flag = pow(10,count);
			total = total%flag;	//取和输入的数相同位数 
			if (total == K){
   
				printf("%d %d\n",N,N*K*K);
				break;
			}
		}	
		if (N==10){
   
			printf("No\n");
		}
	} 
	return 0;
}