Description
On the PE,the teacher wants to choose some of n students to play games. Teacher asks n students stand in a line randomly(obviously,they have different height), then teacher tells someone to leave the queue(relative position is not change)to make the left students keep a special queue:
Assuming that the left students’ numbers are 1, 2,……, m from left to right and their height are T1,T2,……,Tm. Then they satisfy T1<T2<......<Ti, Ti>Ti+1>……>Tm (1<=i<=m).
Giving you the height of n students (from left to right), please calculate how many students left at most if you want to keep such a special queue.
Input
The first line contains an integer n (2<=n<=1000) represents the number of students.
The second line contains n integers Ti(150<=Ti<=200) separated by spaces, represent the height(cm) of student i.
Output
One integer represents the number of the left students.
Sample Input
8
186 180 150 183 199 130 190 180
Sample Output
5
n个学生,求满足身高左递增右递减的最长序列 可以没有递增部分或没有递减部分
正序 反序分别求一遍LIS,然后遍历每个点,正序+反序-1 即为结果 -1是因为该点会重复一次
#include <bits/stdc++.h>
using namespace std;
int dp1[1005],dp2[1005],a[1005],b[1005];
int main()
{
int n;
while(scanf("%d",&n)!=EOF)
{
memset(a,0,sizeof(a));
memset(b,0,sizeof(b));
for(int i=1;i<=n;i++)
{
scanf("%d",&a[i]);
b[n-i+1]=a[i];
}
memset(dp1,0,sizeof(dp1));
memset(dp2,0,sizeof(dp2));
dp1[1]=1;
dp2[1]=1;
for(int i=2;i<=n;i++)
{
dp1[i]=1;
dp2[i]=1;
for(int j=1;j<i;j++)
{
if(a[j]<a[i])
dp1[i]=max(dp1[i],dp1[j]+1);
if(b[j]<b[i])
dp2[i]=max(dp2[i],dp2[j]+1);
}
}
int ans=-1;
for(int i=1;i<=n;i++)
{
int tmp=dp1[i]+dp2[n-i+1];
ans=max(ans,tmp);
}
cout<<ans-1<<'\n';
}
return 0;
}