Java内存区域与内存溢出问题

Java虚拟机已实现自动内存管理机制,为何还需要学习这知识?

  • 一旦出现内存泄漏和溢出方面的问题,如果不了解虚拟机是怎样使用内存的,那么排查错误将会成为一项异常艰难的工作。

内存空间

运行时数据区域:

线程隔离(随用户线程启动和结束而创建和销毁):虚拟机栈、本地方法栈、程序计数器

共享数据区:堆、方法区

Java虚拟机栈:每个方法在执行的同时都会创建一个栈帧(Stack Frame)[插图]用于存储局部变量表、操作数栈、动态链接、方法出口等信息。每一个方法从调用直至执行完成的过程,就对应着一个栈帧在虚拟机栈中入栈到出栈的过程。

本地方法栈(Native Method Stack):与虚拟机栈所发挥的作用是非常相似的,它们之间的区别不过是虚拟机栈为虚拟机执行Java方法(也就是字节码)服务,而本地方法栈则为虚拟机使用到的Native方法服务。

Java堆:此内存区域的唯一目的就是存放对象实例,几乎所有的对象实例都在这里分配内存。这一点在Java虚拟机规范中的描述是:所有的对象实例以及数组都要在堆上分配;由于现在收集器基本都采用分代收集算法,所以Java堆中还可以细分为:新生代和老年代;再细致一点的有Eden空间、From Survivor空间、To Survivor空间等

方法区(Method Area):与Java堆一样,是各个线程共享的内存区域,它用于存储已被虚拟机加载的类信息、常量、静态变量、即时编译器编译后的代码等数据

运行时常量池:用于存放编译期生成的各种字面量和符号引用,这部分内容将在类加载后进入方法区的运行时常量池中存放。

直接内存:不是虚拟机运行时数据区的一部分,也不是Java虚拟机规范中定义的内存区域。NIO(New Input/Output)类,引入了一种基于通道(Channel)与缓冲区(Buffer)的I/O方式,它可以使用Native函数库直接分配堆外内存,然后通过一个存储在Java堆中的DirectByteBuffer对象作为这块内存的引用进行操作。这样能在一些场景中显著提高性能,因为避免了在Java堆和Native堆中来回复制数据。(NIO类申请内存即是使用的直接内存)

对象的创建

对象创建-->定位符号引用是否被加载--->加载类(加载、解析、初始化)--->Java堆中划分内存(包含指针碰撞、空闲列表)

  • 指针碰撞:假设Java堆中内存是绝对规整的,所有用过的内存都放在一边,空闲的内存放在另一边,中间放着一个指针作为分界点的指示器,那所分配内存就仅仅是把那个指针向空闲空间那边挪动一段与对象大小相等的距离。

  • 空闲列表:如果Java堆中的内存并不是规整的,已使用的内存和空闲的内存相互交错,那就没有办法简单地进行指针碰撞了,虚拟机就必须维护一个列表,记录上哪些内存块是可用的,在分配的时候从列表中找到一块足够大的空间划分给对象实例,并更新列表上的记录,这种分配方式称为“空闲列表”

Java堆是否规则由所采用的的垃圾收集器是否带有压缩整理功能决定,在使用Serial、ParNew等带Compact过程的收集器时,系统采用的分配算法是指针碰撞,而使用CMS这种基于Mark-Sweep算法的收集器时,通常采用空闲列表

对象的内部布局

在HotSpot虚拟机中,对象在内存中存储的布局可以分为3块区域:对象头(Header)、实例数据(Instance Data)和对齐填充(Padding)。

对象头:对象头包括两部分信息

  • 第一部分用于存储对象自身的运行时数据,如哈希码(HashCode)、GC分代年龄、锁状态标志、线程持有的锁、偏向线程ID、偏向时间戳等,这部分数据的长度在32位和64位的虚拟机(未开启压缩指针)中分别为32bit和64bit,官方称它为“Mark Word”。Mark Word被设计成一个非固定的数据结构以便在极小的空间内存储尽量多的信息,它会根据对象的状态复用自己的存储空间
  • 对象头的另外一部分是类型指针,即对象指向它的类元数据的指针,虚拟机通过这个指针来确定这个对象是哪个类的实例。

垃圾收集器与内存分配策略

概论

学习要知道垃圾收集器(GC)关注三个问题:哪些内存需要回收?什么时候回收?如何回收?

Java内存运行时区域的各个部分,其中程序计数器、虚拟机栈、本地方法栈3个区域随线程而生,随线程而灭;栈中的栈帧随着方法的进入和退出而有条不紊地执行着出栈和入栈操作。在这几个区域内就不需要过多考虑回收的问题,因为方法结束或者线程结束时,内存自然就跟随着回收了。

Java堆和方法区则不一样,一个接口中的多个实现类需要的内存可能不一样,一个方法中的多个分支需要的内存也可能不一样,我们只有在程序处于运行期间时才能知道会创建哪些对象,这部分内存的分配和回收都是动态的,垃圾收集器所关注的是这部分内存

引用计数算法

给对象中添加一个引用计数器,每当有一个地方引用它时,计数器值就加1;当引用失效时,计数器值就减1;任何时刻计数器为0的对象就是不可能再被使用的。

主流的Java虚拟机里面没有选用引用计数算法来管理内存,其中最主要的原因是它很难解决对象之间相互循环引用的问题。

例子:对象objA和objB都有字段instance,赋值令objA.instance=objB及objB.instance=objA,除此之外,这两个对象再无任何引用,实际上这两个对象已经不可能再被访问,但是它们因为互相引用着对方,导致它们的引用计数都不为0,于是引用计数算法无法通知GC收集器回收它们。

可达性分析算法

算法的基本思路就是通过一系列的称为“GC Roots”的对象作为起始点,从这些节点开始向下搜索,搜索所走过的路径称为引用链(Reference Chain),当一个对象到GC Roots没有任何引用链相连(用图论的话来说,就是从GC Roots到这个对象不可达)时,则证明此对象是不可用的。

在Java语言中,可作为GC Roots的对象包括以下:

  • 虚拟机栈(栈帧中的本地变量表)中引用的对象
  • 方法区中类静态属性引用的对象
  • 方法区中常量引用的对象
  • 本地方法栈中JNI(即一般说的Native方法)引用的对象

回收方法区

很多人认为方法区(或者HotSpot虚拟机中的永久代)是没有垃圾收集的,Java虚拟机规范中确实说过可以不要求虚拟机在方法区实现垃圾收集,而且在方法区中进行垃圾收集的“性价比”一般比较低:在堆中,尤其是在新生代中,常规应用进行一次垃圾收集一般可以回收70%~95%的空间,而永久代的垃圾收集效率远低于此。

垃圾回收算法

标记-清除算法

最基础的收集算法是“标记-清除”(Mark-Sweep)算法,如同它的名字一样,算法分为“标记”和“清除”两个阶段:首先标记出所有需要回收的对象,在标记完成后统一回收所有被标记的对象。

它的主要不足有两个:一个是效率问题,标记和清除两个过程的效率都不高;另一个是空间问题,标记清除之后会产生大量不连续的内存碎片。

复制算法

为解决效率问题,“复制”(Copying)算法将可用内存按容量划分为大小相等的两块,每次只使用其中的一块。当这一块的内存用完了,就将还存活着的对象复制到另外一块上面,然后再把已使用过的内存空间一次清理掉。

进阶:将内存分为一块较大的Eden空间和两块较小的Survivor空间,每次使用Eden和其中一块Survivor当回收时,将Eden和Survivor中还存活着的对象一次性地复制到另外一块Survivor空间上,最后清理掉Eden和刚才用过的Survivor空间HotSpot虚拟机默认Eden和Survivor的大小比例是8∶1,也就是每次新生代中可用内存空间为整个新生代容量的90% (80%+10%),只有10%的内存会被“浪费”。如果另外一块Survivor空间没有足够空间存放上一次新生代收集下来的存活对象时,这些对象将直接通过分配担保机制进入老年代。

新生代使用复制收集算法,但为了内存利用率,只使用其中一个Survivor空间来作为轮换备份,因此当出现大量对象在Minor GC后仍然存活的情况(最极端的情况就是内存回收后新生代中所有对象都存活),就需要老年代进行分配担保,把Survivor无法容纳的对象直接进入老年代

标记-整理算法

复制收集算法在对象存活率较高时就要进行较多的复制操作,效率将会变低。更关键的是,如果不想浪费50%的空间,就需要有额外的空间进行分配担保,以应对被使用的内存中所有对象都100%存活的极端情况,所以在老年代一般不能直接选用这种算法。

老年代的特点,有人提出了另外一种“标记-整理”(Mark-Compact)算法,标记过程仍然与“标记-清除”算法一样,但后续步骤不是直接对可回收对象进行清理,而是让所有存活的对象都向一端移动,然后直接清理掉端边界以外的内存。

分代收集算法

当前商业虚拟机的垃圾收集都采用“分代收集”(Generational Collection)算法,根据对象存活周期的不同将内存划分为几块。一般是把Java堆分为新生代和老年代,这样就可以根据各个年代的特点采用最适当的收集算法。在新生代中,每次垃圾收集时都发现有大批对象死去,只有少量存活,那就选用复制算法,只需要付出少量存活对象的复制成本就可以完成收集。而老年代中因为对象存活率高、没有额外空间对它进行分配担保,就必须使用“标记—清理”或者“标记—整理”算法来进行回收。

小总结:当前虚拟机垃圾收集基本采用“分代收集”算法,其中将Java堆分为新生代与老年代,并且新生代采用“复制算法”,老年代采用“标记-清理”算法或“标记-整理“算法

HotSpot的算法实现

枚举根节点

可达性分析对执行时间的敏感还体现在GC停顿上,因为这项分析工作必须在一个能确保一致性的快照中进行——这里“一致性”的意思是指在整个分析期间整个执行系统看起来就像被冻结在某个时间点上,不可以出现分析过程中对象引用关系还在不断变化的情况,该点不满足的话分析结果准确性就无法得到保证。

在HotSpot的实现中,是使用一组称为OopMap的数据结构来达到这个目的的,在类加载完成的时候,HotSpot就把对象内什么偏移量上是什么类型的数据计算出来,在JIT编译过程中,也会在特定的位置记录下栈和寄存器中哪些位置是引用。

安全点

为何需要安全点?

  • OopMap的协助下,HotSpot可以快速且准确地完成GC Roots枚举,但一个很现实的问题随之而来:可能导致引用关系变化,或者说OopMap内容变化的指令非常多,如果为每一条指令都生成对应的OopMap,那将会需要大量的额外空间,这样GC的空间成本将会变得很高。

HotSpot也的确没有为每条指令都生成OopMap,前面已经提到,只是在“特定的位置”记录了这些信息,这些位置称为安全点(Safepoint)

安全点的选定基本上是以程序“是否具有让程序长时间执行的特征”为标准进行选定的--“长时间执行”的最明显特征就是指令序列复用,例如方法调用、循环跳转、异常跳转等,所以具有这些功能的指令才会产生Safepoint。

对于Sefepoint,另一个需要考虑的问题是如何在GC发生时让所有线程(这里不包括执行JNI调用的线程)都“跑”到最近的安全点上再停顿下来。这里有两种方案可供选择:抢先式中断(Preemptive Suspension)和主动式中断(VoluntarySuspension)

  • 抢先式中断不需要线程的执行代码主动去配合,在GC发生时,首先把所有线程全部中断,如果发现有线程中断的地方不在安全点上,就恢复线程,让它“跑”到安全点上。现在几乎没有虚拟机实现采用抢先式中断来暂停线程从而响应GC事件。
  • 主动式中断的思想是当GC需要中断线程的时候,不直接对线程操作,仅仅简单地设置一个标志,各个线程执行时主动去轮询这个标志,发现中断标志为真时就自己中断挂起。

安全区域

为何需要安全区域?

  • Safepoint机制保证了程序执行时,在不太长的时间内就会遇到可进入GC的Safepoint。但是,程序“不执行”的时候呢?所谓的程序不执行就是没有分配CPU时间,典型的例子就是线程处于Sleep状态或者Blocked状态,这时候线程无法响应JVM的中断请求,“走”到安全的地方去中断挂起,JVM也显然不太可能等待线程重新被分配CPU时间。对于这种情况,就需要安全区域(Safe Region)来解决。

安全区域是指在一段代码片段之中,引用关系不会发生变化。在这个区域中的任意地方开始GC都是安全的。我们也可以把Safe Region看做是被扩展了的Safepoint。在线程执行到Safe Region中的代码时,首先标识自己已经进入了Safe Region,那样,当在这段时间里JVM要发起GC时,就不用管标识自己为Safe Region状态的线程了。在线程要离开Safe Region时,它要检查系统是否已经完成了根节点枚举(或者是整个GC过程),如果完成了,那线程就继续执行,否则它就必须等待直到收到可以安全离开Safe Region的信号为止。

垃圾收集器

收集算法是内存回收的方法论,垃圾收集器是内存回收的具体实现。

不同版本的虚拟机所提供的垃圾收集器都可能会有很大差别,并且一般都会提供参数供用户根据自己的应用特点和要求组合出各个年代所使用的收集器。

serial收集器

特点:它进行垃圾收集时,必须暂停其他所有的工作线程,直到它收集结束

优点:简单而高效,,它依然是虚拟机运行在Client模式下的默认新生代收集器。

缺点:在用户不可见的情况下把用户正常工作的线程全部停掉,这对很多应用来说都是难以接受的。

parNew收集器

特点:Serial收集器的多线程版本,除了使用多条线程进行垃圾收集之外,其余行为包括Serial收集器可用的所有控制参数、收集算法、Stop The World、对象分配规则、回收策略等都与Serial收集器完全一样,。它却是许多运行在Server模式下的虚拟机中首选的新生代收集器除了Serial收集器外,目前只有它能与CMS收集器配合工作。

Parallel Scavenge收集器

特点:Parallel Scavenge收集器是一个新生代收集器,它也是使用复制算法的收集器,又是并行的多线程收集器。Parallel Scavenge收集器的特点是它的关注点与其他收集器不同,CMS等收集器的关注点是尽可能地缩短垃圾收集时用户线程的停顿时间,而Parallel Scavenge收集器的目标则是达到一个可控制的吞吐量

优点:吞吐量 = 运行用户代码时间/(运行用户代码时间 +垃圾收集时间),虚拟机总共运行了100分钟,其中垃圾收集花掉1分钟,那吞吐量就是99%。停顿时间越短就越适合需要与用户交互的程序,良好的响应速度能提升用户体验,而高吞吐量则可以高效率地利用CPU时间,尽快完成程序的运算任务,主要适合在后台运算而不需要太多交互的任务。

Serial Old收集器

特点:Serial Old是Serial收集器的老年代版本,它同样是一个单线程收集器使用“标记-整理”算法。这个收集器的主要意义也是在于给Client模式下的虚拟机使用。如果在Server模式下,那么它主要还有两大用途:一种用途是在JDK 1.5以及之前的版本中与Parallel Scavenge收集器搭配使用,另一种用途就是作为CMS收集器的后备预案,在并发收集发生Concurrent Mode Failure时使用。

Parallel Old收集器

特点:Parallel Old是Parallel Scavenge收集器的老年代版本,使用多线程和“标记-整理”算法

优点:在注重吞吐量以及CPU资源敏感的场合,都可以优先考虑ParallelScavenge加Parallel Old收集器

CMS收集器(Concurrent Mark Sweep)

特点:CMS(Concurrent Mark Sweep)收集器是一种以获取最短回收停顿时间为目标的收集器。目前很大一部分的Java应用集中在互联网站或者B/S系统的服务端上,这类应用尤其重视服务的响应速度,希望系统停顿时间最短,以给用户带来较好的体验。CMS收集器就非常符合这类应用的需求。

CMS收集器是基于“标记—清除”算法实现的,它的运作过程相对于前面几种收集器来说更复杂一些,

整个过程分为4个步骤(三标记一清除),包括:

  • 初始标记(CMS initial mark):仅标记一下GC Roots能直接关联到的对象
  • 并发标记(CMS concurrent mark):进行GC Roots Tracing的过程
  • 重新标记(CMS remark):重新标记阶段则是为了修正并发标记期间因用户程序继续运作而导致标记产生变动的那一部分对象的标记记录,这个阶段的停顿时间一般会比初始标记阶段稍长一些,但远比并发标记的时间短。
  • 并发清除(CMS concurrent sweep):进行并发清除无关联数据

优点:由于整个过程中耗时最长的并发标记和并发清除过程收集器线程都可以与用户线程一起工作,所以,从总体上来说,CMS收集器的内存回收过程是与用户线程一起并发执行的。

缺点:

1、CMS收集器对CPU资源非常敏感;CMS默认启动的回收线程数是(CPU数量+3)/ 4

2、CMS收集器无法处理浮动垃圾(由于CMS并发清理阶段用户线程还在运行着,伴随程序运行自然就还会有新的垃圾不断产生,这一部分垃圾出现在标记过程之后,CMS无法在当次收集中处理掉它们,只好留待下一次GC时再清理掉。这一部分垃圾就称为“浮动垃圾”)

3、CMS是一款基于“标记—清除”算法实现的收集器(意味着收集结束时会有大量空间碎片产生)空间碎片过多时,将会给大对象分配带来很大麻烦,往往会出现老年代还有很大空间剩余,但是无法找到足够大的连续空间来分配当前对象,不得不提前触发一次Full GC。(为了解决这个问题,CMS收集器提供了一个-XX:+UseCMSCompactAtFullCollection开关参数(默认就是开启的),用于在CMS收集器顶不住要进行FullGC时开启内存碎片的合并整理过程,内存整理的过程是无法并发的,空间碎片问题没有了,但停顿时间不得不变长。虚拟机设计者还提供了另外一个参数-XX:CMSFullGCsBeforeCompaction,这个参数是用于设置执行多少次不压缩的Full GC后,跟着来一次带压缩的(默认值为0,表示每次进入Full GC时都进行碎片整理)。)

G1收集器

特点:G1是一款面向服务端应用的垃圾收集器。HotSpot开发团队赋予它的使命是(在比较长期的)未来可以替换掉JDK 1.5中发布的CMS收集器。与其他GC收集器相比,G1具备如下特点:

  • 并行与并发:充分利用多CPU、多核环境优势,使用多个CPU(CPU或者CPU核心)来缩短Stop-The-World停顿的时间。通过并发的方式让Java程序继续执行
  • 分代收集:G1可以不需要其他收集器配合就能独立管理整个GC堆,但它能够采用不同的方式去处理新创建的对象和已经存活了一段时间、熬过多次GC的旧对象以获取更好的收集效果
  • 空间整合:CMS的“标记—清理”算法不同,G1从整体来看是基于“标记—整理”算法实现的收集器,从局部(两个Region之间)上来看是基于“复制”算法实现的。但无论如何,这两种算法都意味着G1运作期间不会产生内存空间碎片,收集后能提供规整的可用内存。这种特性有利于程序长时间运行,分配大对象时不会因为无法找到连续内存空间而提前触发下一次GC
  • 可预测的停顿:这是G1相对于CMS的另一大优势,降低停顿时间是G1和CMS共同的关注点,但G1除了追求低停顿外,还能建立可预测的停顿时间模型,能让使用者明确指定在一个长度为M毫秒的时间片段内,消耗在垃圾收集上的时间不得超过N毫秒,这几乎已经是实时Java(RTSJ)的垃圾收集器的特征了

如果现在采用的收集器没有出现问题,那就没有任何理由现在去选择G1,如果你的应用追求低停顿,那G1现在已经可以作为一个可尝试的选择,如果你的应用追求吞吐量,那G1并不会为你带来什么特别的好处”。

Minor GC与Full GC

新生代GC(Minor GC):指发生在新生代的垃圾收集动作,因为Java对象大多都具备朝生夕灭的特性,所以Minor GC非常频繁,一般回收速度也比较快。

老年代GC(Major GC / Full GC):指发生在老年代的GC,出现了MajorGC,经常会伴随至少一次的Minor GC(但非绝对的,在Parallel Scavenge收集器的收集策略里就有直接进行Major GC的策略选择过程)。Major GC的速度一般会比Minor GC慢10倍以上