HDU-5780 gcd

.&preview=true)

%0A%5C%5C%3D%5Csum_%7Bi%3D1%7D%5E%7Bn%7D%5Csum_%7Bj%3D1%7D%5E%7Bn%7D(x%5E%7Bgcd(i%2Cj)%7D-1)%0A%5C%5C%3D%5Csum_%7Bd%3D1%7D%5E%7Bn%7D(x%5Ed-1)%5Csum_%7Bi%3D1%7D%5E%7Bn%7D%5Csum_%7Bj%3D1%7D%5E%7Bn%7D%5Bgcd(i%2Cj)%3Dd%5D%0A%5C%5C%3D%5Csum_%7Bd%3D1%7D%5E%7Bn%7D(x%5Ed-1)%5Csum_%7Bi%3D1%7D%5E%7B%5Cfrac%7Bn%7D%7Bd%7D%7D%5Csum_%7Bi%3Dj%7D%5E%7B%5Cfrac%7Bn%7D%7Bd%7D%7D%5Bgcd(i%2Cj)%3D1%5D%0A%5C%5C%3D%5Csum_%7Bd%3D1%7D%5E%7Bn%7D(x%5Ed-1)%5Ccdot%20(2%5Csum_%7Bi%3D1%7D%5E%7B%5Cfrac%7Bn%7D%7Bd%7D%7D%5Cvarphi(i)-1)%0A&preview=true)

#include<bits/stdc++.h>
#define me(a,x) memset(a,x,sizeof(a))
#define IN freopen("in.txt","r",stdin);
#define OUT freopen("out.txt","w",stdout);
#define sc scanf
#define itn int
#define STR clock_t startTime = clock();
#define END clock_t endTime = clock();cout << double(endTime - startTime) / CLOCKS_PER_SEC *1000<< "ms" << endl;
using namespace std;
const int N=1e6+5;
const long long mod=1e9+7;
const long long mod2=998244353;
const int oo=0x7fffffff;
const int sup=0x80000000;
typedef long long ll;
typedef unsigned long long ull;
template <typename it>void db(it *begin,it *end){while(begin!=end)cout<<(*begin++)<<" ";puts("");}
template <typename it>
string to_str(it n){string s="";while(n)s+=n%10+'0',n/=10;reverse(s.begin(),s.end());return s;}
template <typename it>int o(it a){cout<<a<<endl;return 0;}
inline ll mul_64(ll x,ll y,ll c){return (x*y-(ll)((long double)x/c*y)*c+c)%c;}
inline ll ksm(ll a,ll b,ll c){ll ans=1;for(;b;b>>=1,a=a*a%c)if(b&1)ans=ans*a%c;return ans;}
inline void exgcd(ll a,ll b,ll &x,ll &y){if(!b)x=1,y=0;else exgcd(b,a%b,y,x),y-=x*(a/b);}
int prime[N],tot=0;
bool vis[N]={0};
ll phi[N];
void pre(){
phi[1]=1;
for(int i=2;i<N;i++){
if(!vis[i])prime[++tot]=i,phi[i]=i-1;
for(int j=1;j<=tot&&i*prime[j]<N;j++){
vis[i*prime[j]]=1;
if(i%prime[j]==0){
phi[i*prime[j]]=phi[i]*prime[j];
break;
}else phi[i*prime[j]]=phi[i]*(prime[j]-1);
}
}
for(int i=1;i<N;i++)phi[i]=(phi[i-1]+phi[i])%mod;
}
ll cal(ll x,ll n){
if(n==0)return 0;
ll inv=ksm(x-1,mod-2,mod);
ll k=ksm(x,n,mod);
ll ans=x*(k-1)%mod*inv%mod;
ans=(ans-n+mod)%mod;
return ans;
}
int main(){
pre();
int t;cin>>t;
while(t--){
int x,n;
sc("%d%d",&x,&n);
if(x==1){
o(0);
continue;
}
ll ans=0;
for(ll i=1,last;i<=n;i=last+1){
last=n/(n/i);
ans+=(cal(x,last)-cal(x,i-1))*(2LL*phi[n/i]-1)%mod;
if(ans>=mod)ans-=ans/mod*mod;
if(ans<0)ans=(ans%mod+mod)%mod;
}
printf("%lld\n",ans);
}
}