一、概念

时间复杂度是总运算次数表达式中受n的变化影响最大的那一项(不含系数)

比如:一般总运算次数表达式类似于这样:

a*2^n+b*n^3+c*n^2+d*n*lg(n)+e*n+f                                                                   


a!=0时,时间复杂度就是O(2^n);

a=0,b=0 =>时间复杂度就是O(n^3);

a=0,b=0,c=0 =>时间复杂度就是O(n^2)依此类推

eg:

<span style="font-size:18px;">//(1)
  for(i=1;i<=n;i++)           
    for(j=1;j<=n;j++)
          s++;//循环了n*n次,当然是O(n^2)
//(2)
     for(i=1;i<=n;i++)
     for(j=i;j<=n;j++)
          s++;//循环了(n+n-1+n-2+...+1)≈(n^2)/2,因为时间复杂度是不考虑系数的,所以也是O(n^2)
//(3)
  for(i=1;i<=n;i++)
  for(j=1;j<=i;j++)
      s++;//循环了(1+2+3+...+n)≈(n^2)/2,当然也是O(n^2)
//(4)   
     i=1;k=0;
 while(i<=n-1)
{
     k+=10*i;
      i++;    
    }//循环了n-1≈n次,所以是O(n)
//(5)
  for(i=1;i<=n;i++)
 for(j=1;j<=i;j++)
     for(k=1;k<=j;k++)
         x=x+1;/*循环了(1^2+2^2+3^2+...+n^2)=n(n+1)(2n+1)/6(这个公式要记住哦)≈(n^3)/3,不考虑系数,自然是O(n^3)*/</span>

另外,在时间复杂度中,log(2,n)(以2为底)与lg(n)(以10为底)是等价的,因为对数换底公式:log(a,b)=log(c,b)/log(c,a)所以,log(2,n)=log(2,10)*lg(n),忽略掉系数,二者当然是等价的

二、计算方法

1.一个算法执行所耗费的时间,从理论上是不能算出来的,必须上机运行测试才能知道。但我们不可能也没有必要对每个算法都上机测试,只需知道哪个算法花费的时间多,哪个算法花费的时间少就可以了。并且一个算法花费的时间与算法中语句的执行次数成正比例,哪个算法中语句执行次数多,它花费时间就多。

一个算法中的语句执行次数称为语句频度或时间频度。记为T(n)。

2.一般情况下,算法的基本操作重复执行的次数是模块n的某一个函数f(n),因此,算法的时间复杂度记做:T(n)=O(f(n))。随着模块n的增大,算法执行的时间的增长率和f(n)的增长率成正比,所以f(n)越小,算法的时间复杂度越低,算法的效率越高。

在计算时间复杂度的时候,先找出算法的基本操作,然后根据相应的各语句确定它的执行次数,再找出T(n)的同数量级(它的同数量级有以下:1,Log2n ,n ,nLog2n ,n的平方,n的三次方,2的n次方,n!),找出后,f(n)=该数量级,若T(n)/f(n)求极限可得到一常数c,则时间复杂度T(n)=O(f(n))。

.常见的时间复杂度

按数量级递增排列,常见的时间复杂度有:

常数阶O(1),  对数阶O(log2n),  线性阶O(n),  线性对数阶O(nlog2n),  平方阶O(n^2), 立方阶O(n^3),..., k次方阶O(n^k), 指数阶O(2^n) 。

其中,

1.O(n),O(n^2), 立方阶O(n^3),..., k次方阶O(n^k) 为多项式阶时间复杂度,分别称为一阶时间复杂度,二阶时间复杂度。。。。

2.O(2^n),指数阶时间复杂度,该种不实用

3.对数阶O(log2n),   线性对数阶O(nlog2n),除了常数阶以外,该种效率最高

例:算法:

<span style="font-size:18px;"> for(i=1;i<=n;++i)
  {
     for(j=1;j<=n;++j)
     {
        c[ i ][ j ]=0; //该步骤属于基本操作 执行次数:n^2
        for(k=1;k<=n;++k)
          c[ i ][ j ]+=a[ i ][ k ]*b[ k ][ j ]; //n^3
     }
  }</span>

则有 T(n)= n^2+n^3,根据上面括号里的同数量级,我们可以确定 n^3为T(n)的同数量级,则有f(n)= n^3,然后根据T(n)/f(n)求极限可得到常数c,则该算法的 时间复杂度:T(n)=O(n^3)

时间复杂度性

定义:如果一个问题的规模是n,解这一问题的某一算法所需要的时间为T(n),它是n的某一函数 T(n)称为这一算法的“时间复杂性”。当输入量n逐渐加大时,时间复杂性的极限情形称为算法的“渐近时间复杂性”。

我们常用大O表示法表示时间复杂性,注意它是某一个算法的时间复杂性。大O表示只是说有上界,由定义如果f(n)=O(n),那显然成立f(n)=O(n^2),它给你一个上界,但并不是上确界,但人们在表示的时候一般都习惯表示前者。此外,一个问题本身也有它的复杂性,如果某个算法的复杂性到达了这个问题复杂性的下界,那就称这样的算法是最佳算法。

“大O记法”:在这种描述中使用的基本参数是 n,即问题实例的规模,把复杂性或运行时间表达为n的函数。这里的“O”表示量级 (order),比如说“二分检索是 O(logn)的”,也就是说它需要“通过logn量级的步骤去检索一个规模为n的数组”记法 O ( f(n) )表示当 n增大时,运行时间至多将以正比于 f(n)的速度增长。

这种渐进估计对算法的理论分析和大致比较是非常有价值的,但在实践中细节也可能造成差异。例如,一个低附加代价的O(n2)算法在n较小的情况下可能比一个高附加代价的 O(nlogn)算法运行得更快。当然,随着n足够大以后,具有较慢上升函数的算法必然工作得更快。

O(1)

<span style="font-size:18px;"> Temp=i;     i=j;     j=temp;          </span>

以上三条单个语句的频度均为1,该程序段的执行时间是一个与问题规模n无关的常数。算法的时间复杂度为常数阶,记T(n)=O(1)。如果算法的执行时间不随着问题规模n的增加而增长,即使算法中有上千条语句,其执行时间也不过是一个较大的常数。此类算法的时间复杂度是O(1)。

O(n^2)

<span style="font-size:18px;">//1) 交换i和j的内容
    sum=0;//(一 次)                
     for(i=1;i<=n;i++)       //(n次 )
        for(j=1;j<=n;j++) //(n^2次 )
         sum++;       //(n^2次 )
//即 T(n)=2n^2+n+1 =O(n^2)
//2)    
for (i=1;i<n;i++)
    {
        y=y+1;         //  频度是n-1
        for (j=0;j<=(2*n);j++)    
           x++;        //    频度是(n-1)*(2n+1)=2n^2-n-1
    }// f(n)=2n^2-n-1+(n-1)=2n^2-2,所以T(n)=O(n^2).   </span>

O(n)

<span style="font-size:18px;"> a=0;  b=1;                   // 频度:2  
    for (i=1;i<=n;i++) //频度: n 
    {  
       s=a+b;    //频度: n-1,
       b=a;     //频度:n-1 
       a=s;     //频度:n-1
    } //T(n)=2+n+3(n-1)=4n-1=O(n).    </span>

O(log2n )

<span style="font-size:18px;">     i=1;      // 频度是1
    while (i<=n)
       i=i*2; /*频度是f(n)   则:2^f(n)<=n; f(n)<=log2n     取最大值f(n)= log2n,   T(n)=O(log2n )*/</span>

O(n^3)

<span style="font-size:18px;"><span style="color:#003300;"> for(i=0;i<n;i++)
    {  
       for(j=0;j<i;j++)  
       {
          for(k=0;k<j;k++)
             x=x+2;  
       }
    }</span></span>

解:当i=m, j=k的时候,内层循环的次数为k当i=m时, j 可以取 0,1,...,m-1 , 所以这里最内循环共进行0+1+...+m-1=(m-1)m/2次所以,i从0取到n, 则循环共进行了:0+(1-1)*1/2+...+(n-1)n/2=n(n+1)(n-1)/6所以时间复杂度为O(n^3)

我们还应该区分算法的最坏情况的行为和期望行为。如快速排序的最坏情况运行时间是 O(n^2),但期望时间是 O(nlogn)。通过每次都仔细 地选择基准值,我们有可能把平方情况 (即O(n^2)情况)的概率减小到几乎等于 0。在实际中,精心实现的快速排序一般都能以 (O(nlogn)时间运行。

下面是一些常用的记法:

访问数组中的元素是常数时间操作,或说O(1)操作。一个算法如 果能在每个步骤去掉一半数据元素,如二分检索,通常它就取 O(logn)时间。用strcmp比较两个具有n个字符的串需要O(n)时间。常规的矩阵乘算法是O(n^3),因为算出每个元素都需要将n对 元素相乘并加到一起,所有元素的个数是n^2。

指数时间算法通常来源于需要求出所有可能结果。例如,n个元 素的集合共有2n个子集,所以要求出所有子集的算法将是O(2n)的。指数算法一般说来是太复杂了,除非n的值非常小,因为,在 这个问题中增加一个元素就导致运行时间加倍。不幸的是,确实有许多问题 (如著名的“巡回售货员问题” ),到目前为止找到的算法都是指数的。如果我们真的遇到这种情况,通常应该用寻找近似最佳结果的算法替代之。