题目

P1494 [国家集训队]小Z的袜子

解析

  1. 在区间\([l,r]\)内,
    任选两只袜子,有
    \[r-l+1\choose2\]
    \[=\frac{(r-l+1)!}{2!(r-l-1)!}\]
    \[=\frac{(r-l+1)(r-l)}{2}\]
    种选择。

  2. 对于一种颜***r> 设在区间\([l,r]\)内出现次数为\(cnt_i\)
    \(cnt_i\)只这种颜色的袜子里任选两只
    就有\[cnt_i\choose2\]
    \[=\frac{cnt_i!}{2!(cnt_i-2)!}\]
    \[=\frac{(cnt_i)(cnt_i-1)}{2!}\]
    \[=\frac{cnt_i^2-cnt_i}{2}\]
    种方案。
  3. 那对于区间内所有颜色的袜子,任选两只颜色相同的方案是
    \[\sum_{i=l}^r \frac{cnt_i^2-cnt_i}{2}\]
    \[=\frac{\sum_{i=l}^rcnt_i- \sum_{i=l}^rcnt_i}{2}\]

这样得到能抽到两只相同颜色的袜子概率是
\[\frac{\frac{\sum_{i=l}^rcnt_i^2- \sum_{i=l}^rcnt_i}{2}}{\frac{(r-l+1)(r-l)}{2}}\]
\[=\frac{\sum_{i=l}^rcnt_i^2- \sum_{i=l}^rcnt_i}{(r-l+1)(r-l)}\]
因为区间内所有颜色的袜子出现的次数加起来就是区间长度\(r-l+1\)
所以就有
\[\frac{\sum_{i=l}^rcnt_i^2- (r-l+1)}{(r-l+1)(r-l)}\]
这样对于一个询问的区间,\(r-l+1\)是一定值,这样,我们就只需要用莫队维护\(cnt_i^2\)得到的价值就可以了。
当新加入一个元素的时候\((cnt_i+1)^2=cnt_i^2+2cnt_i+1\),sum就加上\(2cnt_i+1\)
删除一个元素的时候,sum就减去\(2cnt_i-1\)即可。
最后注意特判分子等于0的情况,否则会RE。

代码

#include <bits/stdc++.h>
#define int long long
using namespace std;
const int N = 5e4 + 10;
int n, m, num, sum;
int fz[N], fm[N], a[N], cnt[N];
class node {
    public :
        int l, r, id, block;
        bool operator < (const node &oth) const {
            return this->block != oth.block ? this->l < oth.l : (this->block & 1 ? this->r < oth.r : this->r > oth.r);
        }
} e[N];

template<class T>inline void read(T &x) {
    x = 0; int f = 0; char ch = getchar();
    while (!isdigit(ch)) f |= (ch == '-'), ch = getchar();
    while (isdigit(ch)) x = x * 10 + ch - '0', ch = getchar();
    x = f ? -x : x;
    return;
}

inline void add(int x) {sum += (cnt[a[x]] * 2 + 1), cnt[a[x]]++;};

inline void del(int x) {sum -= (cnt[a[x]] * 2 - 1), cnt[a[x]]--;};

int gcd(int a, int b) {return b == 0 ? a : gcd(b, a % b);}

signed main() {
    read(n), read(m);
    int k = sqrt(n);
    for (int i = 1; i <= n; ++i) read(a[i]);
    for (int i = 1, x, y; i <= m; ++i) {
        read(x), read(y);
        e[i] = (node) {x, y, i, x / k + 1};
    }
    sort(e + 1, e + 1 + m);
    int l = 1, r = 0;
    for (int i = 1; i <= m; ++i) {
        int ll = e[i].l, rr = e[i].r;
        while (l < ll) del(l++);
        while (l > ll) add(--l);
        while (r < rr) add(++r);
        while (r > rr) del(r--);
        if (ll == rr) {
            fz[e[i].id] = 0;
            fm[e[i].id] = 1;
            continue;
        }
        fz[e[i].id] = sum - (rr - ll + 1), fm[e[i].id] = (rr - ll + 1) * (rr - ll);
        int GCD = gcd(fz[e[i].id], fm[e[i].id]);
        fz[e[i].id] /= GCD, fm[e[i].id] /= GCD;
    }
    for (int i = 1; i <= m; ++i) {
        if (fz[i] == 0) printf("0/1\n");
        else printf("%lld/%lld\n", fz[i], fm[i]);
    }
}