题目
解析
在区间\([l,r]\)内,
任选两只袜子,有
\[r-l+1\choose2\]
\[=\frac{(r-l+1)!}{2!(r-l-1)!}\]
\[=\frac{(r-l+1)(r-l)}{2}\]
种选择。- 对于一种颜***r> 设在区间\([l,r]\)内出现次数为\(cnt_i\)
从\(cnt_i\)只这种颜色的袜子里任选两只
就有\[cnt_i\choose2\]
\[=\frac{cnt_i!}{2!(cnt_i-2)!}\]
\[=\frac{(cnt_i)(cnt_i-1)}{2!}\]
\[=\frac{cnt_i^2-cnt_i}{2}\]
种方案。 那对于区间内所有颜色的袜子,任选两只颜色相同的方案是
\[\sum_{i=l}^r \frac{cnt_i^2-cnt_i}{2}\]
\[=\frac{\sum_{i=l}^rcnt_i- \sum_{i=l}^rcnt_i}{2}\]
这样得到能抽到两只相同颜色的袜子概率是
\[\frac{\frac{\sum_{i=l}^rcnt_i^2- \sum_{i=l}^rcnt_i}{2}}{\frac{(r-l+1)(r-l)}{2}}\]
\[=\frac{\sum_{i=l}^rcnt_i^2- \sum_{i=l}^rcnt_i}{(r-l+1)(r-l)}\]
因为区间内所有颜色的袜子出现的次数加起来就是区间长度\(r-l+1\)
所以就有
\[\frac{\sum_{i=l}^rcnt_i^2- (r-l+1)}{(r-l+1)(r-l)}\]
这样对于一个询问的区间,\(r-l+1\)是一定值,这样,我们就只需要用莫队维护\(cnt_i^2\)得到的价值就可以了。
当新加入一个元素的时候\((cnt_i+1)^2=cnt_i^2+2cnt_i+1\),sum就加上\(2cnt_i+1\)。
删除一个元素的时候,sum就减去\(2cnt_i-1\)即可。
最后注意特判分子等于0的情况,否则会RE。
代码
#include <bits/stdc++.h>
#define int long long
using namespace std;
const int N = 5e4 + 10;
int n, m, num, sum;
int fz[N], fm[N], a[N], cnt[N];
class node {
public :
int l, r, id, block;
bool operator < (const node &oth) const {
return this->block != oth.block ? this->l < oth.l : (this->block & 1 ? this->r < oth.r : this->r > oth.r);
}
} e[N];
template<class T>inline void read(T &x) {
x = 0; int f = 0; char ch = getchar();
while (!isdigit(ch)) f |= (ch == '-'), ch = getchar();
while (isdigit(ch)) x = x * 10 + ch - '0', ch = getchar();
x = f ? -x : x;
return;
}
inline void add(int x) {sum += (cnt[a[x]] * 2 + 1), cnt[a[x]]++;};
inline void del(int x) {sum -= (cnt[a[x]] * 2 - 1), cnt[a[x]]--;};
int gcd(int a, int b) {return b == 0 ? a : gcd(b, a % b);}
signed main() {
read(n), read(m);
int k = sqrt(n);
for (int i = 1; i <= n; ++i) read(a[i]);
for (int i = 1, x, y; i <= m; ++i) {
read(x), read(y);
e[i] = (node) {x, y, i, x / k + 1};
}
sort(e + 1, e + 1 + m);
int l = 1, r = 0;
for (int i = 1; i <= m; ++i) {
int ll = e[i].l, rr = e[i].r;
while (l < ll) del(l++);
while (l > ll) add(--l);
while (r < rr) add(++r);
while (r > rr) del(r--);
if (ll == rr) {
fz[e[i].id] = 0;
fm[e[i].id] = 1;
continue;
}
fz[e[i].id] = sum - (rr - ll + 1), fm[e[i].id] = (rr - ll + 1) * (rr - ll);
int GCD = gcd(fz[e[i].id], fm[e[i].id]);
fz[e[i].id] /= GCD, fm[e[i].id] /= GCD;
}
for (int i = 1; i <= m; ++i) {
if (fz[i] == 0) printf("0/1\n");
else printf("%lld/%lld\n", fz[i], fm[i]);
}
}