A 多彩的树
题目地址:
基本思路:
我们看这个K只有10,所以很容易想到状压,那么我们状压颜色,然后对于每种情况我们去找图中只包含这几种颜色的连通块,对于每个联通块,假如包含n个顶点,那么路径就有条,也就是条,综上我们得到了每种颜色状态的路径条数。但是由于存在更多颜色数的状态里包含更少颜色数状态的情况,所以我们要对上面得到的答案再进行一个容斥,就能得到真正的答案了。
参考代码:
#pragma GCC optimize(2) #pragma GCC optimize(3) #include <bits/stdc++.h> using namespace std; #define IO std::ios::sync_with_stdio(false) #define int long long #define rep(i, l, r) for (int i = l; i <= r; i++) #define per(i, l, r) for (int i = l; i >= r; i--) #define mset(s, _) memset(s, _, sizeof(s)) #define pb push_back #define pii pair <int, int> #define mp(a, b) make_pair(a, b) #define INF 0x3f3f3f3f inline int read() { int x = 0, neg = 1; char op = getchar(); while (!isdigit(op)) { if (op == '-') neg = -1; op = getchar(); } while (isdigit(op)) { x = 10 * x + op - '0'; op = getchar(); } return neg * x; } inline void print(int x) { if (x < 0) { putchar('-'); x = -x; } if (x >= 10) print(x / 10); putchar(x % 10 + '0'); } const int maxn = 5e4 + 10; struct Edge{ int to,next; }edge[maxn << 1]; int cnt = 0 ,head[maxn]; void add_edge(int u,int v){ edge[++cnt].next = head[u]; edge[cnt].to = v; head[u] = cnt; } int n,k,a[maxn],fac[maxn]; int res = 0; bool vis[maxn]; void dfs(int u,int par,int S){//dfs找连通块; if((a[u]|S) != S || vis[u]) return; vis[u] = true; res++; for(int i = head[u] ; i!= -1 ; i = edge[i].next){ int to = edge[i].to; if(to == par) continue; dfs(to,u,S); } } int dp[1 << 11]; const int mod = 1e9 + 7; signed main() { fac[0] = 1; rep(i,1,maxn-1) fac[i] = fac[i-1] * 131 % mod;//预处理下这个131^i; n = read(),k = read(); rep(i,1,n) a[i] = 1 << (read() - 1);//这里处理一下颜色; cnt = 0;mset(head,-1); rep(i,1,n-1){ int u = read(),v = read(); add_edge(u,v); add_edge(v,u); } for(int i = 0 ; i < (1 << k) ; i++){ mset(vis,false); rep(j,1,n) if(!vis[j]){ res = 0 ; dfs(j,0,i); int k1 = res,k2 = res - 1; if(k1 % 2 == 0) k1 /= 2; else k2 /= 2; //加每个联通块中的路径条数; dp[i] = (dp[i] + k1 * k2 % mod + res) % mod; } } int ans = 0; for(int i = 0 ; i < (1 << k) ; i++){ for(int j = (i-1) & i ; j ; j = (j-1) & i) dp[i] -= dp[j];//容斥一下; ans = (ans + fac[__builtin_popcount(i)] * dp[i] % mod) % mod; } while(ans < 0) ans += mod; ans %= mod; cout << ans << '\n'; return 0; }