经典的0-1背包问题。
代码中的backtracking部分是输出组成最大价值的编号。
// runtime: 4ms
// space: 728K
#include <iostream>
#include <algorithm>
#include <stack>
using namespace std;
int main() {
int c, n; // c for count, n for number;
while (cin>> c >> n) {
int dp[n + 1][c + 1];
int price[n + 1], mark[n + 1];
for (int i = 1; i <= n; ++i) {
cin >> price[i] >> mark[i];
}
for (int i = 0; i <= n; ++i) {
for (int j = 0; j <= c; ++j) {
if (i == 0 || j == 0) {
dp[i][j] = 0;
continue;
}
if (j < price[i]) {
dp[i][j] = dp[i - 1][j];
continue;
}
else {
dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - price[i]] + mark[i]);
}
}
}
// output dp
for (int i = 0; i <= n; ++i) {
for (int j = 0; j <= c; ++j) {
cout << dp[i][j] << " ";
if (j == c)
cout << endl;
}
}
cout << dp[n][c] << endl;
// Backtracking
int row = n, col = c;
stack<int> s;
while (row > 0 && col > 0) {
if (dp[row][col] == dp[row - 1][col]) { // not selected
row--;
continue;
} else { // selected
s.push(row);
col -= price[row];
row--;
}
}
while (!s.empty()) {
cout << s.top() << endl;
s.pop();
}
}
return 0;
} 空间优化为一维数组。
// runtime: 4mm
// space; 528K
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
int main() {
int c, n; // c for capacity, n for number
while (scanf("%d %d", &c, &n) != EOF) {
int V[n], P[n]; // V for value, P for Price
for (int i = 0; i < n; ++i) {
scanf("%d %d", &P[i], &V[i]);
}
int dp[c + 1];
memset(dp, 0, sizeof(dp)); // initialize dp.
for (int i = 0; i < n; ++i) {
for (int j = c; j >= P[i]; --j) {
dp[j] = max(dp[j], dp[j - P[i]] + V[i]);
}
}
printf("%d\n", dp[c]);
}
return 0;
}

京公网安备 11010502036488号