解题思路
题目很明确,最少的花费就是最小生成树的权值,我选择prim算法求最小生成树,比较简单,套板子主要理解prim里面的两栖边的意义。prim理解起来就不难了。
//无向图最小生成树 #include <bits/stdc++.h> using namespace std; #define js ios::sync_with_stdio(false);cin.tie(0); cout.tie(0) typedef long long ll; inline int read() { int s = 0, w = 1; char ch = getchar(); while (ch < 48 || ch > 57) { if (ch == '-') w = -1; ch = getchar(); } while (ch >= 48 && ch <= 57) s = (s << 1) + (s << 3) + (ch ^ 48), ch = getchar(); return s * w; } const int N = 3e3 + 7; const int INF = 0x3f3f3f3f; int e[N][N], vis[N], dis[N]; int n, m; ll ans; //prim适合稠密图 O(n^2),特别是完全图最小生成树的求解 void prim() { memset(vis, 0, sizeof(vis)); memset(dis, 0x3f, sizeof(dis)); dis[1] = 0; for (int i = 1; i < n; ++i) { int x = 0; for (int j = 1; j <= n; ++j) if (!vis[j] && (x == 0 || dis[j] < dis[x])) x = j; vis[x] = 1; for (int j = 1; j <= n; ++j)//用u点更新 刚刚新拓展的边 if (!vis[j]) dis[j] = min(dis[j], e[x][j]); } } int main() { int c; while (cin >> c >> m >> n) { //构建邻接矩阵 memset(e, 0x3f, sizeof(e)); for (int i = 0; i <= n; ++i) e[i][i] = 0; for (int i = 1; i <= m; ++i) { int x = read(), y = read(), z = read(); e[x][y] = e[y][x] = min(e[x][y], z); } //求最小生成树 prim(); for (int i = 2; i <= n; ++i) ans += dis[i]; if (c < ans) puts("No"); else puts("Yes"); } return 0; }