题目描述
  Roundgod has an  matrix 
. One day while she's doing her physics homework, she wonders is it possible to define the physical quantity for matrices.
As we all know, the pressure  satisfies a formula 
, where 
 is the compressive force and 
 is the base area.
  To describe it in maths, Roundgod puts forward that the compressive force of a matrix equals the sum of all its entries, while the base area of a matrix equals the sum of the entries in its last row. Then she can calculate the pressure for a matrix with the same formula.
  Your goal is to find the submatrix of AA with maximum pressure.
  A submatrix is obtained by taking nonempty subsets of its rows and columns. Formally, given a nonempty subsequence  of 
 and a nonempty subsequence 
 of 
, then 
 is a submatrix of 
.  
输入描述
  There are multiple test cases. The first line of input contains an integer , indicating the number of test cases. For each test case:
  The first line contains two integers , the number of rows and columns of the matrix, respectively.
  Each of the next  lines contains 
 integers, specifying the matrix 
.  
输出描述
  For each test case, print the maximum pressure within an absolute or relative error of no more than  in one line.  
示例1
输入
1 3 3 1 3 5 6 8 9 2 7 4
输出
4.50000000
说明
   is one of submatrices of 
 with maximum pressure 
.  
分析
  ,若 
,那么 
。因此,若选择的子矩阵有多列,将其拆成两个行数相同的更小的子矩阵,一定有一个小子矩阵的压强大于等于原子矩阵的压强。所以,最优的子矩阵应当只有一列。
  若  为一个子矩阵的底面积,贪心地取 
 为子矩阵(
 正上方的所有元素),其压强是所有以 
 为底面积的子矩阵中压强最大的。枚举 
,即可在 
 内求得答案。
代码
/******************************************************************
Copyright: 11D_Beyonder All Rights Reserved
Author: 11D_Beyonder
Problem ID: 2020牛客暑期多校训练营(第六场) Problem C
Date: 8/26/2020
Description: Inequality
*******************************************************************/
#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
const int N=202;
int _;
int n,m;
int a[N][N];
double sum[N][N];
int main(){
    for(cin>>_;_;_--){
        scanf("%d%d",&n,&m);
        int i,j;
        for(i=1;i<=n;i++){
            for(j=1;j<=m;j++){
                scanf("%d",&a[i][j]);
            }
        }
        //预处理每一列的前缀和
        for(j=1;j<=m;j++){
            for(i=1;i<=n;i++){
                sum[j][i]=a[i][j]+sum[j][i-1];
            }
        }
        double ans=0;
        for(i=1;i<=n;i++){
            for(j=1;j<=m;j++){
                ans=max(ans,sum[j][i]/a[i][j]);
            }
        }
        printf("%.8lf\n",ans);
    }
    return 0;
} 
京公网安备 11010502036488号