题目描述
Roundgod has an matrix
. One day while she's doing her physics homework, she wonders is it possible to define the physical quantity for matrices.
As we all know, the pressure satisfies a formula
, where
is the compressive force and
is the base area.
To describe it in maths, Roundgod puts forward that the compressive force of a matrix equals the sum of all its entries, while the base area of a matrix equals the sum of the entries in its last row. Then she can calculate the pressure for a matrix with the same formula.
Your goal is to find the submatrix of AA with maximum pressure.
A submatrix is obtained by taking nonempty subsets of its rows and columns. Formally, given a nonempty subsequence of
and a nonempty subsequence
of
, then
is a submatrix of
.
输入描述
There are multiple test cases. The first line of input contains an integer , indicating the number of test cases. For each test case:
The first line contains two integers , the number of rows and columns of the matrix, respectively.
Each of the next lines contains
integers, specifying the matrix
.
输出描述
For each test case, print the maximum pressure within an absolute or relative error of no more than in one line.
示例1
输入
1 3 3 1 3 5 6 8 9 2 7 4
输出
4.50000000
说明
is one of submatrices of
with maximum pressure
.
分析
,若
,那么
。因此,若选择的子矩阵有多列,将其拆成两个行数相同的更小的子矩阵,一定有一个小子矩阵的压强大于等于原子矩阵的压强。所以,最优的子矩阵应当只有一列。
若 为一个子矩阵的底面积,贪心地取
为子矩阵(
正上方的所有元素),其压强是所有以
为底面积的子矩阵中压强最大的。枚举
,即可在
内求得答案。
代码
/******************************************************************
Copyright: 11D_Beyonder All Rights Reserved
Author: 11D_Beyonder
Problem ID: 2020牛客暑期多校训练营(第六场) Problem C
Date: 8/26/2020
Description: Inequality
*******************************************************************/
#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
const int N=202;
int _;
int n,m;
int a[N][N];
double sum[N][N];
int main(){
for(cin>>_;_;_--){
scanf("%d%d",&n,&m);
int i,j;
for(i=1;i<=n;i++){
for(j=1;j<=m;j++){
scanf("%d",&a[i][j]);
}
}
//预处理每一列的前缀和
for(j=1;j<=m;j++){
for(i=1;i<=n;i++){
sum[j][i]=a[i][j]+sum[j][i-1];
}
}
double ans=0;
for(i=1;i<=n;i++){
for(j=1;j<=m;j++){
ans=max(ans,sum[j][i]/a[i][j]);
}
}
printf("%.8lf\n",ans);
}
return 0;
} 
京公网安备 11010502036488号