资料整理自:一个 HashMap 跟面试官扯了半个小时
一、HashMap的内部数据结构
JDK1.8及以上,内部使用数组 + 链表 / 红黑树。
注意:链表长度 > 8 && 数组大小 >= 64为真时,单向链表才转换成红黑树。
二、HashMap的数据插入原理
过程详解:
- 判断数组是否为空,为空进行初始化;
- 不为空,计算k的hash值,通过(n - 1) & hash计算应当存放在数组中的下标index;
- 查看table[index]是否存在数据,没有数据就构造一个Node节点存放在table[index]中;
- 存在数据,说明发生了hash冲突, 继续判断key是否相等,相等,用新的value替换原数据(onlyIfAbsent为false);
- 如果不是树型节点,创建普通Node加入链表中;判断链表长度是否大于 8, 大于的话链表转换为红黑树;
- 插入完成之后判断当前节点数是否大于阈值,如果大于开始扩容为原数组的二倍。
三、HashMap是怎么设定初始容量大小的?
一般如果new HashMap() 不传值,默认大小是16,负载因子是0.75, 如果自己传入初始大小k,初始化大小为 大于k的 2的整数次方,例如如果传10,大小为16。
(补充说明:实现代码如下)
static final int tableSizeFor(int cap) {
int n = cap - 1;
n |= n >>> 1;
n |= n >>> 2;
n |= n >>> 4;
n |= n >>> 8;
n |= n >>> 16;
return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
}
补充说明:下图是详细过程,算法就是让初始二进制分别右移1,2,4,8,16位,与自己异或,把高位第一个为1的数通过不断右移,把高位为1的后面全变为1,111111 + 1 = 1000000 = (符合大于50并且是2的整数次幂 )
三、HashMap的哈希函数是怎么设计的?
hash函数是先拿到通过key 的hashcode,是32位的int值,然后让hashcode的高16位和低16位进行异或操作。
高16位和低16位进行异或操作的原因:
- 尽可能降低hash碰撞,越分散越好;
- 算法一定要尽可能高效,因为这是高频操作,因此采用位运算。
为什么采用高16位和低16位进行异或操作就能降低hash碰撞?能不能直接用key的hashcode?
因为 key.hashCode() 函数调用的是key键值类型自带的哈希函数,返回int型散列值。int值范围为**-2147483648~2147483647**,前后加起来大概40亿的映射空间。只要哈希函数映射得比较均匀松散,一般应用是很难出现碰撞的。但问题是一个40亿长度的数组,内存是放不下的。你想,如果HashMap数组的初始大小才16,用之前需要对数组的长度取模运算,得到的余数才能用来访问数组下标。
源码中模运算就是把散列值和数组长度-1做一个"与"操作,位运算比%运算要快。
bucketIndex = indexFor(hash, table.length);
static int indexFor(int h, int length) {
return h & (length-1);
}
顺便说一下,这也正好解释了为什么HashMap的数组长度要取2的整数幂。因为这样(数组长度-1)正好相当于一个“低位掩码”。“与”操作的结果就是散列值的高位全部归零,只保留低位值,用来做数组下标访问。以初始长度16为例,16-1=15。2进制表示是00000000 00000000 00001111。和某散列值做“与”操作如下,结果就是截取了最低的四位值。
10100101 11000100 00100101
& 00000000 00000000 00001111
----------------------------------
00000000 00000000 00000101 //高位全部归零,只保留末四位
右位移16位,正好是32bit的一半,自己的高半区和低半区做异或,就是为了混合原始哈希码的高位和低位,以此来加大低位的随机性。而且混合后的低位掺杂了高位的部分特征,这样高位的信息也被变相保留下来。
结果显示,当HashMap数组长度为512的时候(),也就是用掩码取低9位的时候,在没有扰动函数的情况下,发生了103次碰撞,接近30%。而在使用了扰动函数之后只有92次碰撞。碰撞减少了将近10%。看来扰动函数确实还是有功效的。
另外Java1.8相比1.7做了调整,1.7做了四次移位和四次异或,但明显Java 8觉得扰动做一次就够了,做4次的话,多了可能边际效用也不大,所谓为了效率考虑就改成一次了。
四、HashMap1.8的优化
- 数组+链表改成了数组+链表/红黑树;
原因:防止发生hash冲突,链表长度过长,将时间复杂度由O(n)降为O(logn)。
- 链表的插入方式从头插法改成了尾插法;
因为头插***使链表发生反转,多线程环境下会产生环。 A线程在插入节点B,B线程也在插入,遇到容量不够开始扩容,重新hash,放置元素,采用头插法,后遍历到的B节点放入了头部,这样形成了环,如下图所示:
- 扩容的时候1.7需要对原数组中的元素进行重新hash定位在新数组的位置,1.8采用更简单的判断逻辑,位置不变或者索引+旧容量大小。
这是由于扩容是扩大为原数组大小的2倍,用于计算数组位置的掩码仅仅只是高位多了一个1,举个例子:
扩容前长度为16,用于计算 (n-1) & hash 的二进制n - 1为0000 1111, 扩容后为32后的二进制就高位多了1,============>为0001 1111。
因为是& 运算,1和任何数 & 都是它本身,那就分二种情况,如下图:原数据hashcode高位第4位为0和高位为1的情况;
第四位高位为0,重新hash数值不变,第四位为1,重新hash数值比原来大16(旧数组的容量)
- 在插入时,1.7先判断是否需要扩容再插入,1.8先进行插入,插入完成再判断是否需要扩容。
五、HashMap是线程安全的吗?
不是,在多线程环境下,1.7 会产生死循环、数据丢失、数据覆盖的问题,1.8 中会有数据覆盖的问题。
以1.8为例,当A线程执行到下面代码第6行判断index位置为空后正好挂起,B线程开始执行第7 行,往index位置的写入节点数据,这时A线程恢复现场,执行赋值操作,就把A线程的数据给覆盖了;
六、怎么解决HashMap线程不安全的问题?
ava中有HashTable、Collections.synchronizedMap、以及ConcurrentHashMap可以实现线程安全的Map。
- HashTable是直接在操作方法上加synchronized关键字,锁住整个数组,粒度比较大;
- Collections.synchronizedMap是使用Collections集合工具的内部类,通过传入Map封装出一个SynchronizedMap对象,内部定义了一个对象锁,方法内通过对象锁实现;
- ConcurrentHashMap使用分段锁,降低了锁粒度,让并发度大大提高。
ConcurrentHashMap的分段锁的实现原理
ConcurrentHashMap成员变量使用volatile 修饰,免除了指令重排序,同时保证内存可见性,另外使用CAS操作和synchronized结合实现赋值操作,多线程操作只会锁住当前操作索引的节点。
如下图,线程A锁住A节点所在链表,线程B锁住B节点所在链表,操作互不干涉。
为什么链表转红黑树的阈值是8,红黑树转链表的阈值是6? 因为经过计算,在hash函数设计合理的情况下,发生hash碰撞8次的几率为百万分之6,概率说话。。因为8够用了,至于为什么转回来是6,因为如果hash碰撞次数在8附近徘徊,会一直发生链表和红黑树的转化,为了预防这种情况的发生。