题目:
其实就是给出每条边的单位费用,q次查询,每次查询改变所有边的容量(所有边容量一样),问最后流出1流量的最小花费是多少?
题解:
暴力做法肯定是每次询问都改一次容量,但是肯定会超时,想想其他方法
对于题目的每次询问,每条增广路的容量为u/v,所需最大流是1,我们可以列出一个式子
cost(u/v,1) = cost(u,v)
也就是把问题变成每条容量为u,所需要的最大流为v
为了达到最大流为v的要求,肯定有a条增广路容量用完,但也肯定会有一个增广路只用了部分(假设用了b容量)0<=b<u
能得到:v = a * u + b(0<=b<u)
所以我们只需要求出前a条增广路的全部和第a+1条增广路的b容量
然后记得判断流出的流量要大于等于v才可以,不足v就输出NaN
因为跑得最小费用最大流,这样的答案一定是最优答案
代码:
#include<bits/stdc++.h> using namespace std; #define lowbit(x) ((x)&(-x)) #define REP(i, a, n) for(int i=a;i<=(n);i++) #define IOS ios::sync_with_stdio(false),cin.tie(0), cout.tie(0) typedef long long ll; typedef unsigned long long ull; typedef pair<int, int> P; const int maxn = 1e5 + 10; const int N = 1e2 + 10; const int M = 1e3 + 10; const int inf = 0x3f3f3f3f; const ll INF = 0x3f3f3f3f3f3f3f3f; const int mod = 1e9 + 7; const int mod2 = 998244353; const int mod3 = 1e9 + 9; const int hash1 = 131; const int hash2 = 13331; const double eps = 1e-6; int head[N], ver[M], nxt[M], edge[M], cost[M]; int tot = 1; int d[N], incf[N], pre[N]; int vis[N]; void add(int x, int y, int z, int c) { ver[++tot] = y, edge[tot] = z, cost[tot] = c, nxt[tot] = head[x], head[x] = tot; ver[++tot] = x, edge[tot] = 0, cost[tot] = -c, nxt[tot] = head[y], head[y] = tot; } int s, t; vector<int> path; bool spfa() { queue<int> q; memset(d, inf, sizeof(d)); memset(vis, 0, sizeof(vis)); q.push(s); d[s] = 0, vis[s] = 1; incf[s] = 1 << 30; while (!q.empty()) { int x = q.front(); q.pop(); vis[x] = 0; for (int i = head[x]; i; i = nxt[i]) { if (!edge[i]) continue; int y = ver[i]; if (d[y] > d[x] + cost[i]) { d[y] = d[x] + cost[i]; incf[y] = min(incf[x], edge[i]); pre[y] = i; if (!vis[y]) vis[y] = 1, q.push(y); } } } if (d[t] == inf) return false; return d[t]; } int maxflow, ans; void update() { path.push_back(d[t]);//记录每条增广路的花费 int x = t; while (x != s) { int i = pre[x]; edge[i] -= incf[t]; edge[i ^ 1] += incf[t]; x = ver[i ^ 1]; } maxflow += incf[t]; ans += d[t] * incf[t]; } ll sumd[N]; int main() { int n, m; while (scanf("%d%d", &n, &m) != EOF) { path.clear(); memset(head, 0, sizeof(head)); tot = 1; for (int i = 1; i <= m; i++) { int a, b, c; scanf("%d%d%d", &a, &b, &c); add(a, b, 1, c); } s = 1, t = n; while (spfa()) update(); for (int i = 0; i < path.size(); i++) { sumd[i + 1] = sumd[i] + path[i];//前i条增广路的花费 } int q; scanf("%d", &q); int u, v; for (int i = 1; i <= q; i++) { scanf("%d%d", &u, &v); if (u * path.size() < v) { puts("NaN"); continue; } ll a = v / u; ll b = v % u; ll ans = sumd[a] * u + path[a] * b; ll x = __gcd((ll) v, ans); printf("%lld/%lld\n", ans / x, v / x); } } return 0; }