stack
stack<TreeNode*> nodeStack;
stack<int> depthStack;
std::stack class template

LIFO stack

后进先出堆栈

Stacks are a type of container adaptor, specifically designed to operate in a LIFO context (last-in first-out), where elements are inserted and extracted only from one end of the container.

堆栈是一种容器适配器,专门设计用于在后进先出(后进先出)环境中操作,元素仅从容器的一端插入和提取。

stacks are implemented as container adaptors, which are classes that use an encapsulated object of a specific container class as its underlying container, providing a specific set of member functions to access its elements. Elements are pushed/popped from the "back" of the specific container, which is known as the top of the stack.

堆栈被实现为容器适配器,容器适配器是使用特定容器类的封装对象作为其底层容器的类,提供一组特定的成员函数来访问其元素。元素从特定容器的“背面”推/弹出,该容器称为堆栈顶部。

The underlying container may be any of the standard container class templates or some other specifically designed container class. The container shall support the following operations:

  • empty
  • size
  • back
  • push_back
  • pop_back

底层容器可以是任何标准容器类模板,也可以是其他一些专门设计的容器类。容器应支持以下操作:

The standard container classes vector, deque and list fulfill these requirements. By default, if no container class is specified for a particular stack class instantiation, the standard container deque is used.

标准容器类vector、deque和list满足这些要求。默认情况下,如果没有为特定堆栈类实例化指定容器类,则使用标准容器deque。 alt

stack.push
nodeStack.push(root);
depthStack.push(0);
nodeStack.push(node -> left);
nodeStack.push(node -> right);
depthStack.push(depth + 1);
depthStack.push(depth + 1);
std::stack::push public member function

Insert element

插入元素

Inserts a new element at the top of the stack, above its current top element. The content of this new element is initialized to a copy of val.

将新元素插入堆栈顶部当前顶部元素的上方。这个新元素的内容被初始化为val的副本。

This member function effectively calls the member function push_back of the underlying container object.

这个成员函数有效地调用了基础容器对象的成员函数push_back。 alt

199. 二叉树的右视图

给定一个二叉树的 根节点 root,想象自己站在它的右侧,按照从顶部到底部的顺序,返回从右侧所能看到的节点值。

alt alt

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
    vector<int> rightSideView(TreeNode* root) {

    }
};
深度优先搜索

思路

我们对树进行深度优先搜索,在搜索过程中,我们总是先访问右子树。那么对于每一层来说,我们在这层见到的第一个结点一定是最右边的结点。

算法

这样一来,我们可以存储在每个深度访问的第一个结点,一旦我们知道了树的层数,就可以得到最终的结果数组。

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
    vector<int> rightSideView(TreeNode* root) {
        unordered_map<int, int> rightmostValueAtDepth;
        int max_depth = -1;

        stack<TreeNode*> nodeStack;
        stack<int> depthStack;
        nodeStack.push(root);
        depthStack.push(0);

        while (!nodeStack.empty()) {
            TreeNode* node = nodeStack.top();nodeStack.pop();
            int depth = depthStack.top();depthStack.pop();

            if (node != NULL) {
            	// 维护二叉树的最大深度
                max_depth = max(max_depth, depth);

                // 如果不存在对应深度的节点我们才插入
                if (rightmostValueAtDepth.find(depth) == rightmostValueAtDepth.end()) {
                    rightmostValueAtDepth[depth] =  node -> val;
                }

                nodeStack.push(node -> left);
                nodeStack.push(node -> right);
                depthStack.push(depth + 1);
                depthStack.push(depth + 1);
            }
        }

        vector<int> rightView;
        for (int depth = 0; depth <= max_depth; ++depth) {
            rightView.push_back(rightmostValueAtDepth[depth]);
        }

        return rightView;
    }
};

alt

广度优先搜索

思路

我们可以对二叉树进行层次遍历,那么对于每层来说,最右边的结点一定是最后被遍历到的。二叉树的层次遍历可以用广度优先搜索实现。

算法

执行广度优先搜索,左结点排在右结点之前,这样,我们对每一层都从左到右访问。因此,只保留每个深度最后访问的结点,我们就可以在遍历完整棵树后得到每个深度最右的结点。除了将栈改成队列,并去除了 rightmost_value_at_depth 之前的检查外,算法没有别的改动。

class Solution {
public:
    vector<int> rightSideView(TreeNode* root) {
        unordered_map<int, int> rightmostValueAtDepth;
        int max_depth = -1;

        queue<TreeNode*> nodeQueue;
        queue<int> depthQueue;
        nodeQueue.push(root);
        depthQueue.push(0);

        while (!nodeQueue.empty()) {
            TreeNode* node = nodeQueue.front();nodeQueue.pop();
            int depth = depthQueue.front();depthQueue.pop();

            if (node != NULL) {
            	// 维护二叉树的最大深度
                max_depth = max(max_depth, depth);

                // 由于每一层最后一个访问到的节点才是我们要的答案,因此不断更新对应深度的信息即可
                rightmostValueAtDepth[depth] =  node -> val;

                nodeQueue.push(node -> left);
                nodeQueue.push(node -> right);
                depthQueue.push(depth + 1);
                depthQueue.push(depth + 1);
            }
        }

        vector<int> rightView;
        for (int depth = 0; depth <= max_depth; ++depth) {
            rightView.push_back(rightmostValueAtDepth[depth]);
        }

        return rightView;
    }
};

alt