A=βtαt+1−αt−11B=−2(βtαtxt+1−αt−1αt−1x0)∵μ=−2ABσ2=A1∴σ2=1−αt1−αt−1βtμ=αt1−αt1−αt−1xt+1−αtαt−1βtx0∵xtx0∴μ=αtxt−1+1−αtzt=αt1(xt−1−αtz)=αt1(xt−1−αtβtz)即:q(xt−1∣xt)∼N(αt1(xt−1−αtβtz),1−αt1−αt−1βt)xt−1=αt1(xt−1−αtβtz)+1−αt1−αt−1βtzz=UNet(xt,t)z∼N(0,I)