最小路径和

给定一个包含非负整数的 m x n 网格,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小。

说明:每次只能向下或者向右移动一步。

示例:

输入:

[

  [1,3,1],

  [1,5,1],

  [4,2,1]

]

输出: 7

解释: 因为路径 1→3→1→1→1 的总和最小。

动态规划

1 当左边和上边都不是矩阵的边界时,

    i !=0 ,j !=0; dp[i][j] = min(dp[i-1][j],dp[i][j-1]) +grid[i][j];

2当只有左边是矩阵的边界时,只能从上面来,

    i =0 ,j !=0;  dp[i][j] =dp[i][j-1] +grid[i][j];

3当只有上边是矩阵的边界时,只能从左边来,

    i !=0 ,j =0;  dp[i][j] =dp[i-1][j] +grid[i][j];

4当左边和上边是矩阵的边界时,

    i =0 ,j =0;其实就是起点 dp[i][j]=grid[i][j];

public int minPathSum(int[][] grid) {
       for(int i = 0; i < grid.length; i++) {
            for(int j = 0; j < grid[0].length; j++) {
                if(i == 0 && j == 0) continue;
                else if(i == 0)  grid[i][j] = grid[i][j - 1] + grid[i][j];
                else if(j == 0)  grid[i][j] = grid[i - 1][j] + grid[i][j];
                else grid[i][j] += Math.min(grid[i - 1][j], grid[i][j - 1]);
            }
        }
        return grid[grid.length - 1][grid[0].length - 1];

    }

不改变原数组的情况下

public class Test9 {
    public static void main(String[] args) {
        int[][] grid ={
  {1,3,1},{1,5,1},{4,2,1}};
        System.out.println(minPathSum(grid));
    }
    public static int minPathSum(int[][] grid) {
        if(grid == null){
            return 0;
        }
        int m = grid.length;
        int n = grid[0].length;
        int[][] dp = new int[m][n];
        for(int i =0;i<m;i++){
            for(int j =0;j<n;j++){
                if(i == 0 && j == 0) {
                    dp[i][j]=grid[i][j];
                }else if(i == 0){
                    dp[i][j] = grid[i][j]+dp[i][j-1];
                }else if(j == 0){
                    dp[i][j] = grid[i][j]+dp[i-1][j];
                }else{
                    dp[i][j] = grid[i][j]+Math.min(dp[i-1][j],dp[i][j-1]);
                }

            }
        }
        return dp[m-1][n-1];
    }
}