快速排序
时间复杂度O(nlogn)
这里涉及到很多边界处理的问题,所以直接记住下面这个模板。使用quick_sort(q, 0, n-1);
实现从小到大排序。
void quick_sort(int q[], int l, int r){
if(l >= r) return;
int k = q[l + r >> 1];
int i = l - 1, j = r + 1;
while(i < j){
do i++; while(q[i] < k);
do j--; while(q[j] > k);
if(i < j){
int tmp = q[i];
q[i] = q[j];
q[j] = tmp;
}
}
quick_sort(q, l, j);
quick_sort(q, j + 1, r);
}实现从大到小(只要改变与k比较的符号)
void quick_sort(int q[], int l, int r){
if(l >= r) return;
int k = q[l + r >> 1];
int i = l - 1, j = r + 1;
while(i < j){
do i++; while(q[i] > k);
do j--; while(q[j] < k);
if(i < j){
int tmp = q[i];
q[i] = q[j];
q[j] = tmp;
}
}
quick_sort(q, l, j);
quick_sort(q, j + 1, r);
}归并排序
时间复杂度O(nlongn)
void merge_sort(int q[], int l, int r){
if(l >= r) return;
int mid = (l + r) >> 1;
merge_sort(q, l, mid);
merge_sort(q, mid + 1, r);
int i = l, j = mid + 1;
int k = 0;
while(i <= mid && j <= r) {
if(q[i] <= q[j]) tmp[k++] = q[i++];
else tmp[k++] = q[j++];
}
while(i <= mid) tmp[k++] = q[i++];
while(j <= r) tmp[k++] = q[j++];
for(int i = l, j = 0; i <= r; i++, j++){
q[i] = tmp[j];
}
}二分
时间复杂度O(logn)
整数
注意求mid时,l + r加不加1的问题。
加不加1完全取决于写的是l = mid,还是r = mid,和其他因素毫无关系。
#include <iostream>
#include <cstdio>
#include <algorithm>
using namespace std;
const int N = 1e5 + 10;
int n, q;
int a[N];
int main(){
int n;
scanf("%d %d", &n, &q);
for(int i = 0; i < n; i++){
scanf("%d", &a[i]);
}
int k;
while(q--){
scanf("%d", &k);
int l = 0, r = n - 1;
while(l < r){
//注意这里mid不用+1再除以2
int mid = (l + r) >> 1;
if(a[mid] >= k) r = mid;
else l = mid + 1;
}
if (a[l] != k) printf("%d %d\n", -1, -1);
else{
printf("%d ", l);
l = 0, r = n - 1;
while(l < r){
//注意这里mid需要+1再除以2 加不加1完全取决于写的是l = mid,还是r = mid,和其他因素毫无关系。
int mid = (l + r + 1) >> 1;
if(a[mid] <= k) l = mid;
else r = mid - 1;
}
printf("%d\n", l);
}
}
return 0;
}浮点数
判断条件 r - l > 1e-8
输出double的六位小数 printf("%.6f\n", l);
#include <iostream>
using namespace std;
int main(){
double n;
cin >> n;
double l = -100, r = 100;
while(r - l > 1e-8){
double mid = (l + r) / 2;
if(mid * mid * mid >= n) r = mid;
else l = mid;
}
printf("%.6f\n", l);
return 0;
}高精度加法
#include <iostream>
#include <vector>
using namespace std;
vector<int> add(vector<int> a, vector<int> b){
vector<int> c;
int n = a.size();
int m = b.size();
int i = 0, j = 0;
int flag = 0;
while(i < n && j < m){
int tmp = a[i] + b[j] + flag;
flag = 0;
if(tmp >= 10){
flag = 1;
tmp -= 10;
}
c.push_back(tmp);
i++;
j++;
}
while(i < n){
int tmp = a[i] + flag;
flag = 0;
if(tmp >= 10){
flag = 1;
tmp -= 10;
}
c.push_back(tmp);
i++;
}
while(j < m){
int tmp = b[j] + flag;
flag = 0;
if(tmp >= 10){
flag = 1;
tmp -= 10;
}
c.push_back(tmp);
j++;
}
if(flag) c.push_back(flag);
return c;
}
int main(){
string a, b;
cin >> a >> b;
vector<int> A, B;
for(int i = a.size() - 1; i >= 0; i--){
A.push_back(a[i] - '0');
}
for(int i = b.size() - 1; i >= 0; i--){
B.push_back(b[i] - '0');
}
auto C = add(A, B);
for(int i = C.size() - 1; i >= 0; i--){
printf("%d", C[i]);
}
//printf("\n");
return 0;
}简化一下模板
vector<int> add(vector<int> &A, vector<int> &B)
{
if (A.size() < B.size()) return add(B, A);
vector<int> C;
int t = 0;
for (int i = 0; i < A.size(); i ++ )
{
t += A[i];
if (i < B.size()) t += B[i];
C.push_back(t % 10);
t /= 10;
}
if (t) C.push_back(t);
return C;
}
高精度减法
#include <iostream>
#include <vector>
using namespace std;
//加&传递引用可以节约空间
bool cmp(vector<int> &a, vector<int> &b){
if(a.size() != b.size()) return a.size() > b.size();
for (int i = a.size() - 1; i >= 0; i-- ){
if (a[i] != b[i]) return a[i] > b[i];
}
return true;
}
vector<int> sub(vector<int> &a, vector<int> &b){
vector<int> c;
int n = a.size();
int m = b.size();
int i = 0, j = 0;
int flag = 0;
while(i < n && j < m){
int tmp = a[i] - b[j] + flag;
flag = 0;
if(tmp < 0){
flag = -1;
tmp += 10;
}
c.push_back(tmp);
i++;
j++;
}
while(i < n){
int tmp = a[i] + flag;
flag = 0;
if(tmp < 0){
flag = -1;
tmp += 10;
}
c.push_back(tmp);
i++;
}
//去掉多余的0,如12-12=00,12-11=01
while (c.size() > 1 && c.back() == 0) c.pop_back();
return c;
}
int main(){
string a, b;
cin >> a >> b;
vector<int> A, B;
for(int i = a.size() - 1; i >= 0; i--){
A.push_back(a[i] - '0');
}
for(int i = b.size() - 1; i >= 0; i--){
B.push_back(b[i] - '0');
}
vector<int> C;
if(cmp(A, B)) C = sub(A, B);
else{
C = sub(B, A);
cout << "-";
}
for(int i = C.size() - 1; i >= 0; i--){
printf("%d", C[i]);
}
return 0;
}因为a一定大于等于b,sub函数可以写的更简便一些。
vector<int> sub(vector<int> &a, vector<int> &b){
vector<int> c;
int flag = 0;
for(int i = 0; i < a.size(); i++){
int tmp = a[i] - flag;
if(i < b.size()) tmp -= b[i];
c.push_back((tmp + 10) % 10);
if(tmp < 0) flag = 1;
else flag = 0;
}
//去掉多余的0,如12-12=00,12-11=01
while (c.size() > 1 && c.back() == 0) c.pop_back();
return c;
}高精度乘法
#include <iostream>
#include <vector>
using namespace std;
vector<int> mul(vector<int> &A, int b){
vector<int> C;
int t = 0;
for (int i = 0; i < A.size() || t; i ++ ){
if (i < A.size()) t += A[i] * b;
C.push_back(t % 10);
t /= 10;
}
while (C.size() > 1 && C.back() == 0) C.pop_back();
return C;
}
int main(){
string a;
cin >> a;
vector<int> A;
for(int i = a.size() - 1; i >= 0; i--){
A.push_back(a[i] - '0');
}
int b;
cin >> b;
vector<int> C = mul(A, b);
for(int i = C.size() - 1; i >= 0; i--){
printf("%d", C[i]);
}
return 0;
}高精度除法
原本正常除法应该是从高位开始除,A[]应该从前往后存s比较好,但是一般高精度数的运算都是一起的,而加减乘都是从后往前存比较方便,所以这里A数组的处理不需要变,但是div函数的for循环要反过来处理。
最后得到的c也要反转一下才是之前的那种格式。
#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;
vector<int> div(vector<int> &A, int b, int &r){
vector<int> C;
int t = 0;
for (int i = A.size() - 1; i >= 0; i--){
r = r * 10 + A[i];
C.push_back(r / b);
r %= b;
}
reverse(C.begin(), C.end());
while (C.size() > 1 && C.back() == 0) C.pop_back();
return C;
}
int main(){
string a;
cin >> a;
vector<int> A;
for(int i = a.size() - 1; i >= 0; i--){
A.push_back(a[i] - '0');
}
int b;
cin >> b;
int r;
vector<int> C = div(A, b, r);
for(int i = C.size() - 1; i >= 0; i--){
printf("%d", C[i]);
}
printf("\n%d\n", r);
return 0;
}前缀和
#include <iostream>
#include <cstdio>
#include <algorithm>
using namespace std;
const int N = 1e5 + 10;
int a[N], sum[N];
int main(){
int n, m;
cin >> n >> m;
for(int i = 1; i <= n; i++){
cin >> a[i];
}
for(int i = 1; i <= n; i++){
sum[i] = sum[i-1] + a[i];
}
int l, r;
for(int i = 0; i < m; i++){
cin >> l >> r;
printf("%d\n", sum[r] - sum[l - 1]);
}
return 0;
}二维前缀和(子矩阵)
#include <iostream>
using namespace std;
const int N = 1010;
int a[N][N], s[N][N];
int main(){
int n, m, q;
cin >> n >> m >> q;
for(int i = 1; i <= n; i++){
for(int j = 1; j <= m; j++){
cin >> a[i][j];
}
}
//初始化前缀和数组
for(int i = 1; i <= n; i++){
for(int j = 1; j <= m; j++){
s[i][j] = s[i - 1][j] + s[i][j - 1] - s[i - 1][j - 1] + a[i][j];
}
}
int x1, y1, x2, y2;
for(int i = 0; i < q; i++){
cin >> x1 >> y1 >> x2 >> y2;
int res = s[x2][y2] - s[x2][y1 - 1] - s[x1 - 1][y2] + s[x1 - 1][y1 - 1];
printf("%d\n", res);
}
return 0;
}差分
#include <iostream>
using namespace std;
const int N = 100010;
int n, m;
int a[N], b[N];
int main(){
cin >> n >> m;
for(int i = 1; i <= n; i++){
cin >> a[i];
b[i] = a[i] - a[i - 1]; //构建差分数组
}
int l, r, c;
while(m--){
cin >> l >> r >> c;
b[l] += c;
b[r + 1] -= c;
}
for(int i = 1; i <= n; i++){
a[i] = a[i - 1] + b[i];
printf("%d ", a[i]);
}
return 0;
}y总的模板
for (int i = 1; i <= n; i ) insert(i, i, a[i]);
对于这一行有些同学不理解,帮忙解释一下,其实是假定a数组最开始都是0,那么b数组初始时就是a数组的差分数组了,对于每一个a[i],相当于插入了一个数,可以直接调用insert函数即可。
当然也可以从差分数组的定义出发,for(int i=1;i<=n;i) b[i]=a[i]-a[i-1]; 用这一行替换上一行,效果一样,只是上边的把a数组当成全为0,读入的a[i]再插入,这一个把读入后的当做a数组。
#include <iostream>
using namespace std;
const int N = 100010;
int n, m;
int a[N], b[N];
void insert(int l, int r, int c){
b[l] += c;
b[r + 1] -= c;
}
int main(){
scanf("%d%d", &n, &m);
for (int i = 1; i <= n; i ++ ) scanf("%d", &a[i]);
for (int i = 1; i <= n; i ++ ) insert(i, i, a[i]);
while (m -- ){
int l, r, c;
scanf("%d%d%d", &l, &r, &c);
insert(l, r, c);
}
for (int i = 1; i <= n; i ++ ) b[i] += b[i - 1];
for (int i = 1; i <= n; i ++ ) printf("%d ", b[i]);
return 0;
}二维差分(差分矩阵)
#include <iostream>
using namespace std;
const int N = 1010;
int a[N][N], b[N][N];
void insert(int x1, int y1, int x2, int y2, int c){
b[x1][y1] += c;
b[x2 + 1][y1] -= c;
b[x1][y2 + 1] -= c;
b[x2 + 1][y2 + 1] += c;
}
int main(){
int n, m, q;
cin >> n >> m >> q;
for(int i = 1; i <= n; i++){
for(int j = 1; j <= m; j++){
cin >> a[i][j];
insert(i, j, i, j, a[i][j]);
}
}
int x1, y1, x2, y2, c;
while(q--){
cin >> x1 >> y1 >> x2 >> y2 >> c;
insert(x1, y1, x2, y2, c);
}
for(int i = 1; i <= n; i++){
for(int j = 1; j <= m; j++){
b[i][j] += b[i - 1][j] + b[i][j - 1] - b[i - 1][j - 1];
printf("%d ", b[i][j]);
//这两种都可以
//a[i][j] = a[i - 1][j] + a[i][j - 1] - a[i - 1][j - 1] + b[i][j];
//printf("%d ", a[i][j]);
}
printf("\n");
}
return 0;
}双指针
#include <bits/stdc++.h>
using namespace std;
const int N = 1e5 + 10;
int a[N], s[N];
int main(){
int n;
cin >> n;
for(int i = 0; i < n; i++){
cin >> a[i];
}
int res = 0;
for(int i = 0, j = 0; i < n; i++){
s[a[i]]++;
while(j < i && s[a[i]] > 1){
s[a[j]]--;
j++;
}
res = max(res, i - j + 1);
}
printf("%d\n", res);
return 0;
}位运算
对于每个数字a,a&1得到了该数字的最后一位,之后将a右移一位,直到位0,就得到了1的个数
另外有一种lowbit方法 https://www.acwing.com/activity/content/code/content/40086/
解释 https://www.acwing.com/solution/content/2370/
#include <bits/stdc++.h>
using namespace std;
int main(){
int n, x, k;
cin >> n;
for(int i = 0; i < n; i++){
cin >> x;
k = 0;
while(x){
k += x & 1;
x = x >> 1;
}
cout << k << " ";
}
return 0;
}离散化
#include <iostream>
#include <algorithm>
#include <vector>
using namespace std;
typedef pair<int, int> PII;
const int N = 300010; //开30万是因为add操作有10万次每次1个参数,query操作有10万次每次2个参数
int n, m, x, c, l, r;
int a[N]; //离散化后的数组
int s[N]; //前缀和数组
vector<int> alls; //存所有需要映射的数
vector<PII> add, query; //存添加和查询操作
int find(int x){
int l = 0, r = alls.size() - 1;
while(l < r){
int mid = l + r >> 1;
if(alls[mid] >= x) r = mid;
else l = mid + 1;
}
return r + 1; //映射后的数组下标为1, 2, 3,...,n。 这样做是为了方便计算前缀和
}
int main(){
cin >> n >> m;
while(n--){
cin >> x >> c;
add.push_back({x, c});
alls.push_back(x);
}
while(m--){
cin >> l >> r;
query.push_back({l, r});
alls.push_back(l);
alls.push_back(r);
}
//排序去重,为映射做预处理
sort(alls.begin(), alls.end());
alls.erase(unique(alls.begin(), alls.end()), alls.end());
//将-10^9-10^9的alls映射到数组a
for(auto item : add){
int x = find(item.first);
a[x] += item.second;
}
//求前缀和数组
for(int i = 1; i <= alls.size(); i++) s[i] = s[i - 1] + a[i];
//查询
for(auto item : query){
int l = find(item.first), r = find(item.second);
cout << s[r] - s[l - 1] << endl;
}
return 0;
}区间合并
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <queue>
using namespace std;
typedef pair<int, int> PII;
const int N = 300010;
int n, l, r;
vector<PII> sets;
void merge(vector<PII> &sets){
vector<PII> res;
sort(sets.begin(), sets.end());
int st = -2e9, ed = -2e9;
for(auto item : sets){
if(ed < item.first){
if(st != -2e9) res.push_back({st, ed});
st = item.first, ed = item.second;
}
else ed = max(ed, item.second);
}
if (st != -2e9) res.push_back({st, ed}); //最后一个区间
sets = res;
}
int main(){
cin >> n;
while(n--){
cin >> l >> r;
sets.push_back({l, r});
}
merge(sets);
printf("%d\n", sets.size());
return 0;
}

京公网安备 11010502036488号