快速排序
时间复杂度O(nlogn)
这里涉及到很多边界处理的问题,所以直接记住下面这个模板。使用quick_sort(q, 0, n-1);
实现从小到大排序。
void quick_sort(int q[], int l, int r){ if(l >= r) return; int k = q[l + r >> 1]; int i = l - 1, j = r + 1; while(i < j){ do i++; while(q[i] < k); do j--; while(q[j] > k); if(i < j){ int tmp = q[i]; q[i] = q[j]; q[j] = tmp; } } quick_sort(q, l, j); quick_sort(q, j + 1, r); }
实现从大到小(只要改变与k比较的符号)
void quick_sort(int q[], int l, int r){ if(l >= r) return; int k = q[l + r >> 1]; int i = l - 1, j = r + 1; while(i < j){ do i++; while(q[i] > k); do j--; while(q[j] < k); if(i < j){ int tmp = q[i]; q[i] = q[j]; q[j] = tmp; } } quick_sort(q, l, j); quick_sort(q, j + 1, r); }
归并排序
时间复杂度O(nlongn)
void merge_sort(int q[], int l, int r){ if(l >= r) return; int mid = (l + r) >> 1; merge_sort(q, l, mid); merge_sort(q, mid + 1, r); int i = l, j = mid + 1; int k = 0; while(i <= mid && j <= r) { if(q[i] <= q[j]) tmp[k++] = q[i++]; else tmp[k++] = q[j++]; } while(i <= mid) tmp[k++] = q[i++]; while(j <= r) tmp[k++] = q[j++]; for(int i = l, j = 0; i <= r; i++, j++){ q[i] = tmp[j]; } }
二分
时间复杂度O(logn)
整数
注意求mid时,l + r加不加1的问题。
加不加1完全取决于写的是l = mid,还是r = mid,和其他因素毫无关系。
#include <iostream> #include <cstdio> #include <algorithm> using namespace std; const int N = 1e5 + 10; int n, q; int a[N]; int main(){ int n; scanf("%d %d", &n, &q); for(int i = 0; i < n; i++){ scanf("%d", &a[i]); } int k; while(q--){ scanf("%d", &k); int l = 0, r = n - 1; while(l < r){ //注意这里mid不用+1再除以2 int mid = (l + r) >> 1; if(a[mid] >= k) r = mid; else l = mid + 1; } if (a[l] != k) printf("%d %d\n", -1, -1); else{ printf("%d ", l); l = 0, r = n - 1; while(l < r){ //注意这里mid需要+1再除以2 加不加1完全取决于写的是l = mid,还是r = mid,和其他因素毫无关系。 int mid = (l + r + 1) >> 1; if(a[mid] <= k) l = mid; else r = mid - 1; } printf("%d\n", l); } } return 0; }
浮点数
判断条件 r - l > 1e-8
输出double的六位小数 printf("%.6f\n", l);
#include <iostream> using namespace std; int main(){ double n; cin >> n; double l = -100, r = 100; while(r - l > 1e-8){ double mid = (l + r) / 2; if(mid * mid * mid >= n) r = mid; else l = mid; } printf("%.6f\n", l); return 0; }
高精度加法
#include <iostream> #include <vector> using namespace std; vector<int> add(vector<int> a, vector<int> b){ vector<int> c; int n = a.size(); int m = b.size(); int i = 0, j = 0; int flag = 0; while(i < n && j < m){ int tmp = a[i] + b[j] + flag; flag = 0; if(tmp >= 10){ flag = 1; tmp -= 10; } c.push_back(tmp); i++; j++; } while(i < n){ int tmp = a[i] + flag; flag = 0; if(tmp >= 10){ flag = 1; tmp -= 10; } c.push_back(tmp); i++; } while(j < m){ int tmp = b[j] + flag; flag = 0; if(tmp >= 10){ flag = 1; tmp -= 10; } c.push_back(tmp); j++; } if(flag) c.push_back(flag); return c; } int main(){ string a, b; cin >> a >> b; vector<int> A, B; for(int i = a.size() - 1; i >= 0; i--){ A.push_back(a[i] - '0'); } for(int i = b.size() - 1; i >= 0; i--){ B.push_back(b[i] - '0'); } auto C = add(A, B); for(int i = C.size() - 1; i >= 0; i--){ printf("%d", C[i]); } //printf("\n"); return 0; }
简化一下模板
vector<int> add(vector<int> &A, vector<int> &B) { if (A.size() < B.size()) return add(B, A); vector<int> C; int t = 0; for (int i = 0; i < A.size(); i ++ ) { t += A[i]; if (i < B.size()) t += B[i]; C.push_back(t % 10); t /= 10; } if (t) C.push_back(t); return C; }
高精度减法
#include <iostream> #include <vector> using namespace std; //加&传递引用可以节约空间 bool cmp(vector<int> &a, vector<int> &b){ if(a.size() != b.size()) return a.size() > b.size(); for (int i = a.size() - 1; i >= 0; i-- ){ if (a[i] != b[i]) return a[i] > b[i]; } return true; } vector<int> sub(vector<int> &a, vector<int> &b){ vector<int> c; int n = a.size(); int m = b.size(); int i = 0, j = 0; int flag = 0; while(i < n && j < m){ int tmp = a[i] - b[j] + flag; flag = 0; if(tmp < 0){ flag = -1; tmp += 10; } c.push_back(tmp); i++; j++; } while(i < n){ int tmp = a[i] + flag; flag = 0; if(tmp < 0){ flag = -1; tmp += 10; } c.push_back(tmp); i++; } //去掉多余的0,如12-12=00,12-11=01 while (c.size() > 1 && c.back() == 0) c.pop_back(); return c; } int main(){ string a, b; cin >> a >> b; vector<int> A, B; for(int i = a.size() - 1; i >= 0; i--){ A.push_back(a[i] - '0'); } for(int i = b.size() - 1; i >= 0; i--){ B.push_back(b[i] - '0'); } vector<int> C; if(cmp(A, B)) C = sub(A, B); else{ C = sub(B, A); cout << "-"; } for(int i = C.size() - 1; i >= 0; i--){ printf("%d", C[i]); } return 0; }
因为a一定大于等于b,sub函数可以写的更简便一些。
vector<int> sub(vector<int> &a, vector<int> &b){ vector<int> c; int flag = 0; for(int i = 0; i < a.size(); i++){ int tmp = a[i] - flag; if(i < b.size()) tmp -= b[i]; c.push_back((tmp + 10) % 10); if(tmp < 0) flag = 1; else flag = 0; } //去掉多余的0,如12-12=00,12-11=01 while (c.size() > 1 && c.back() == 0) c.pop_back(); return c; }
高精度乘法
#include <iostream> #include <vector> using namespace std; vector<int> mul(vector<int> &A, int b){ vector<int> C; int t = 0; for (int i = 0; i < A.size() || t; i ++ ){ if (i < A.size()) t += A[i] * b; C.push_back(t % 10); t /= 10; } while (C.size() > 1 && C.back() == 0) C.pop_back(); return C; } int main(){ string a; cin >> a; vector<int> A; for(int i = a.size() - 1; i >= 0; i--){ A.push_back(a[i] - '0'); } int b; cin >> b; vector<int> C = mul(A, b); for(int i = C.size() - 1; i >= 0; i--){ printf("%d", C[i]); } return 0; }
高精度除法
原本正常除法应该是从高位开始除,A[]应该从前往后存s比较好,但是一般高精度数的运算都是一起的,而加减乘都是从后往前存比较方便,所以这里A数组的处理不需要变,但是div函数的for循环要反过来处理。
最后得到的c也要反转一下才是之前的那种格式。
#include <iostream> #include <vector> #include <algorithm> using namespace std; vector<int> div(vector<int> &A, int b, int &r){ vector<int> C; int t = 0; for (int i = A.size() - 1; i >= 0; i--){ r = r * 10 + A[i]; C.push_back(r / b); r %= b; } reverse(C.begin(), C.end()); while (C.size() > 1 && C.back() == 0) C.pop_back(); return C; } int main(){ string a; cin >> a; vector<int> A; for(int i = a.size() - 1; i >= 0; i--){ A.push_back(a[i] - '0'); } int b; cin >> b; int r; vector<int> C = div(A, b, r); for(int i = C.size() - 1; i >= 0; i--){ printf("%d", C[i]); } printf("\n%d\n", r); return 0; }
前缀和
#include <iostream> #include <cstdio> #include <algorithm> using namespace std; const int N = 1e5 + 10; int a[N], sum[N]; int main(){ int n, m; cin >> n >> m; for(int i = 1; i <= n; i++){ cin >> a[i]; } for(int i = 1; i <= n; i++){ sum[i] = sum[i-1] + a[i]; } int l, r; for(int i = 0; i < m; i++){ cin >> l >> r; printf("%d\n", sum[r] - sum[l - 1]); } return 0; }
二维前缀和(子矩阵)
#include <iostream> using namespace std; const int N = 1010; int a[N][N], s[N][N]; int main(){ int n, m, q; cin >> n >> m >> q; for(int i = 1; i <= n; i++){ for(int j = 1; j <= m; j++){ cin >> a[i][j]; } } //初始化前缀和数组 for(int i = 1; i <= n; i++){ for(int j = 1; j <= m; j++){ s[i][j] = s[i - 1][j] + s[i][j - 1] - s[i - 1][j - 1] + a[i][j]; } } int x1, y1, x2, y2; for(int i = 0; i < q; i++){ cin >> x1 >> y1 >> x2 >> y2; int res = s[x2][y2] - s[x2][y1 - 1] - s[x1 - 1][y2] + s[x1 - 1][y1 - 1]; printf("%d\n", res); } return 0; }
差分
#include <iostream> using namespace std; const int N = 100010; int n, m; int a[N], b[N]; int main(){ cin >> n >> m; for(int i = 1; i <= n; i++){ cin >> a[i]; b[i] = a[i] - a[i - 1]; //构建差分数组 } int l, r, c; while(m--){ cin >> l >> r >> c; b[l] += c; b[r + 1] -= c; } for(int i = 1; i <= n; i++){ a[i] = a[i - 1] + b[i]; printf("%d ", a[i]); } return 0; }
y总的模板
for (int i = 1; i <= n; i ) insert(i, i, a[i]);
对于这一行有些同学不理解,帮忙解释一下,其实是假定a数组最开始都是0,那么b数组初始时就是a数组的差分数组了,对于每一个a[i],相当于插入了一个数,可以直接调用insert函数即可。
当然也可以从差分数组的定义出发,for(int i=1;i<=n;i) b[i]=a[i]-a[i-1]; 用这一行替换上一行,效果一样,只是上边的把a数组当成全为0,读入的a[i]再插入,这一个把读入后的当做a数组。
#include <iostream> using namespace std; const int N = 100010; int n, m; int a[N], b[N]; void insert(int l, int r, int c){ b[l] += c; b[r + 1] -= c; } int main(){ scanf("%d%d", &n, &m); for (int i = 1; i <= n; i ++ ) scanf("%d", &a[i]); for (int i = 1; i <= n; i ++ ) insert(i, i, a[i]); while (m -- ){ int l, r, c; scanf("%d%d%d", &l, &r, &c); insert(l, r, c); } for (int i = 1; i <= n; i ++ ) b[i] += b[i - 1]; for (int i = 1; i <= n; i ++ ) printf("%d ", b[i]); return 0; }
二维差分(差分矩阵)
#include <iostream> using namespace std; const int N = 1010; int a[N][N], b[N][N]; void insert(int x1, int y1, int x2, int y2, int c){ b[x1][y1] += c; b[x2 + 1][y1] -= c; b[x1][y2 + 1] -= c; b[x2 + 1][y2 + 1] += c; } int main(){ int n, m, q; cin >> n >> m >> q; for(int i = 1; i <= n; i++){ for(int j = 1; j <= m; j++){ cin >> a[i][j]; insert(i, j, i, j, a[i][j]); } } int x1, y1, x2, y2, c; while(q--){ cin >> x1 >> y1 >> x2 >> y2 >> c; insert(x1, y1, x2, y2, c); } for(int i = 1; i <= n; i++){ for(int j = 1; j <= m; j++){ b[i][j] += b[i - 1][j] + b[i][j - 1] - b[i - 1][j - 1]; printf("%d ", b[i][j]); //这两种都可以 //a[i][j] = a[i - 1][j] + a[i][j - 1] - a[i - 1][j - 1] + b[i][j]; //printf("%d ", a[i][j]); } printf("\n"); } return 0; }
双指针
#include <bits/stdc++.h> using namespace std; const int N = 1e5 + 10; int a[N], s[N]; int main(){ int n; cin >> n; for(int i = 0; i < n; i++){ cin >> a[i]; } int res = 0; for(int i = 0, j = 0; i < n; i++){ s[a[i]]++; while(j < i && s[a[i]] > 1){ s[a[j]]--; j++; } res = max(res, i - j + 1); } printf("%d\n", res); return 0; }
位运算
对于每个数字a,a&1得到了该数字的最后一位,之后将a右移一位,直到位0,就得到了1的个数
另外有一种lowbit方法 https://www.acwing.com/activity/content/code/content/40086/
解释 https://www.acwing.com/solution/content/2370/
#include <bits/stdc++.h> using namespace std; int main(){ int n, x, k; cin >> n; for(int i = 0; i < n; i++){ cin >> x; k = 0; while(x){ k += x & 1; x = x >> 1; } cout << k << " "; } return 0; }
离散化
#include <iostream> #include <algorithm> #include <vector> using namespace std; typedef pair<int, int> PII; const int N = 300010; //开30万是因为add操作有10万次每次1个参数,query操作有10万次每次2个参数 int n, m, x, c, l, r; int a[N]; //离散化后的数组 int s[N]; //前缀和数组 vector<int> alls; //存所有需要映射的数 vector<PII> add, query; //存添加和查询操作 int find(int x){ int l = 0, r = alls.size() - 1; while(l < r){ int mid = l + r >> 1; if(alls[mid] >= x) r = mid; else l = mid + 1; } return r + 1; //映射后的数组下标为1, 2, 3,...,n。 这样做是为了方便计算前缀和 } int main(){ cin >> n >> m; while(n--){ cin >> x >> c; add.push_back({x, c}); alls.push_back(x); } while(m--){ cin >> l >> r; query.push_back({l, r}); alls.push_back(l); alls.push_back(r); } //排序去重,为映射做预处理 sort(alls.begin(), alls.end()); alls.erase(unique(alls.begin(), alls.end()), alls.end()); //将-10^9-10^9的alls映射到数组a for(auto item : add){ int x = find(item.first); a[x] += item.second; } //求前缀和数组 for(int i = 1; i <= alls.size(); i++) s[i] = s[i - 1] + a[i]; //查询 for(auto item : query){ int l = find(item.first), r = find(item.second); cout << s[r] - s[l - 1] << endl; } return 0; }
区间合并
#include <iostream> #include <cstdio> #include <algorithm> #include <cstring> #include <queue> using namespace std; typedef pair<int, int> PII; const int N = 300010; int n, l, r; vector<PII> sets; void merge(vector<PII> &sets){ vector<PII> res; sort(sets.begin(), sets.end()); int st = -2e9, ed = -2e9; for(auto item : sets){ if(ed < item.first){ if(st != -2e9) res.push_back({st, ed}); st = item.first, ed = item.second; } else ed = max(ed, item.second); } if (st != -2e9) res.push_back({st, ed}); //最后一个区间 sets = res; } int main(){ cin >> n; while(n--){ cin >> l >> r; sets.push_back({l, r}); } merge(sets); printf("%d\n", sets.size()); return 0; }