Nastya and a Game

题意:给定一个Arr[n],求满足multipul[L,R]/sum[L,R]==k的区间个数

思路:对于a[i]==1的情况,因为对multipul是没有影响的,只影响L,R。那么对于连续的区间1我们就可以跳,只要sum[L,R]∈[sum/multiple,sum/multiple+ lenof[1] ]。根据数据有multipul不会超过2e18。那么根据以上的做法,因为每次乘的数都是≥2的,第二层while循环的次数不会超过61次。复杂度为O(60*n);

#include<bits/stdc++.h>
#define PI acos(-1.0)
#define pb push_back
#define F first
#define S second
using namespace std;
typedef long long ll;
const int N=2e5+5;
ll a[N],sum[N],jump[N],ans=0;
int main(void){
    ios::sync_with_stdio(false);
    cin.tie(0);cout.tie(0);
    ll n,k;
    cin>>n>>k;
    for(int i=1;i<=n;i++)   cin>>a[i];
    for(int i=1;i<=n;i++)   sum[i]=sum[i-1]+a[i];
    jump[n]=n;
    jump[n+1]=n+1;
    for(int i=n-1;i>=1;--i){
        if(a[i]==1) jump[i]=jump[i+1];
        else    jump[i]=i;
    }
    for(int i=1;i<=n;i++){
        ll mul=1;
        int j=i;
        int last=i;
        while(j<=n&&(ll)2e18/a[j]>=mul){
            /// last to j
            mul*=a[j];
            ll presum=sum[j]-sum[i-1];
//            if(j==i&&mul/presum==k)    ans++;
            last=j;
            j=jump[j+1];
            if(mul%k==0&&mul/k>=presum&&mul/k<=presum+j-last-1)ans++;
//            cout <<last<<" "<<j <<endl;
        }
    }
    cout << ans << endl;

    return 0;
}