思路
简单的博弈论题.
直接上函数,预处理出
的
函数值,然后对于每个局面,所有石子数异或起来,大于0则输出
,否则输出
.
复杂度为.
代码
#include<bits/stdc++.h> using namespace std; #define i64 long long #define fp( i, b, e ) for ( int i(b), I(e); i <= I; ++i ) #define fd( i, b, e ) for ( int i(b), I(e); i >= I; --i ) #define go( i, b ) for ( int i(b), v(to[i]); i; v = to[i = nxt[i]] ) template<typename T> inline void cmax( T &x, T y ){ x < y ? x = y : x; } template<typename T> inline void cmin( T &x, T y ){ y < x ? x = y : x; } #define getchar() ( p1 == p2 && ( p1 = bf, p2 = bf + fread( bf, 1, 1 << 21, stdin ), p1 == p2 ) ? EOF : *p1++ ) char bf[1 << 21], *p1(bf), *p2(bf); template<typename T> inline void read( T &x ){ char t(getchar()), flg(0); x = 0; for ( ; !isdigit(t); t = getchar() ) flg = t == '-'; for ( ; isdigit(t); t = getchar() ) x = x * 10 + ( t & 15 ); flg ? x = -x : x; } clock_t t_bg, t_ed; const int MAXN = 1e4 + 5; int K, M, N; int s[105], d[MAXN], sg[MAXN], x; signed main(){ t_bg = clock(); while( ( read(K), K ) ){ fp( i, 1, K ) read(s[i]); memset( d, 0, sizeof d ); fp( i, 1, 1e4 ){ fp( j, 1, K ) if ( s[j] <= i ) d[sg[i - s[j]]] = i; fp( j, 0, K ) if ( d[j] != i ){ sg[i] = j; break; } } read(M); while( M-- ){ read(N); int ans(0); fp( i, 1, N ) read(x), ans ^= sg[x]; putchar(ans ? 'W' : 'L'); } putchar('\n'); } t_ed = clock(); fprintf( stderr, "\n========info========\ntime : %.3f\n====================\n", (double)( t_ed - t_bg ) / CLOCKS_PER_SEC ); return 0; }