普通筛法
<nobr aria-hidden="true"> 106 </nobr> <math xmlns="http://www.w3.org/1998/Math/MathML"> <msup> <mn> 10 </mn> <mn> 6 </mn> </msup> </math> 0.02 秒
<nobr aria-hidden="true"> 107 </nobr> <math xmlns="http://www.w3.org/1998/Math/MathML"> <msup> <mn> 10 </mn> <mn> 7 </mn> </msup> </math> 0.4秒
<nobr aria-hidden="true"> 108 </nobr> <math xmlns="http://www.w3.org/1998/Math/MathML"> <msup> <mn> 10 </mn> <mn> 8 </mn> </msup> </math> 5 秒
typedef long long LL;
const int LEN = 1e9+1;
bool vis[LEN];
//int Prime[666666];
int cnt = 1;
void init(void)
{
int n = 1e8*5;
int m = sqrt(n)+1;
for(int i = 2; i <= m; ++i)
{
if(!vis[i])
{
// Prime[cnt++] = i;
for(LL j = i * i; j <= n; j += i)
vis[j] = 1;
}
}
}
欧拉筛法
void Euler_s(void){
int i,j,num = 1;
memset(u,true,sizeof(u));
for(int i = 2;i <= n; ++i){
if(u[i]) su[num++] = i;
for(j = 1; j < num; ++j){
if(i*su[j] > n) break;
u[i*su[j]] = false;
if(i % su[j] == 0)
break;
}
}
}
void Era_s(void){
check[1] = 1;
tot = 1;
for(int i = 2;i < maxn; ++i){
if(!check[i]){
Prime[tot++] = i;
for(int j = i+i;j < maxn; ++j) check[j] = 1;
}
}
}
void Euler_s(void){
check[1] = 1;
tot = 1;
int n = 1e6;
for(int i = 2;i <= n; ++i){
if(!check[i]) Prime[tot++] = i;
for(int j = 1;j < tot; ++j){
if(i*Prime[j] > n) break;
check[i*Prime[j]] = 1;
if(i % Prime[j] == 0) break;
}
}
}
对比
当n < 1e7 时二者花费时间几乎相同
n >= 1e8 采用第二种
线性筛法的应用
const int maxn = 1e6+100;
bool check[maxn];
int phi[maxn],Prime[maxn];
void init(int MAXN){
int N = maxn-1;
memset(check,false,sizeof(check));
phi[1] = 1;
int tot = 0;
for(int i = 2;i <= N; ++i){
if(!check[i]){
Prime[tot++] = i;
phi[i] = i-1;
}
for(int j = 0;j < tot; ++j){
if(i*Prime[j] > N) break;
check[i*Prime[j]] = true;
if(i%Prime[j] == 0){
phi[i*Prime[j]] = phi[i]*Prime[j];
break;
}
else{
phi[i*Prime[j]] = phi[i]*(Prime[j]-1);
}
}
}
}
应用举例
const int LEN = 1e6+1;
bool vis[LEN];
LL Prime[LEN];
int cnt = 1;
void init(void)
{
int n = 70000;
for(int i = 2; i <= n; ++i)
{
if(!vis[i])
{
Prime[cnt++] = i;
for(LL j = (LL)i + i; j <= n; j += i)
vis[j] = 1;
}
}
}
bool sign[200000];
int main(void)
{
init();
int T;
cin>>T;
int kase = 0;
while(T--)
{
LL a,b;
cin>>a>>b;
int len = b-a+1;
int num = 0;
me(sign);
int t = sqrt(b);
for(int i = 1; i < cnt&&Prime[i] <= t; ++i)
{
LL tmp = max(a/Prime[i],(LL)2);
if(tmp*Prime[i] < a)
tmp++;
while(tmp * Prime[i] <= b)
{
if(tmp*Prime[i]-a>100000)
while(1);
else
sign[tmp*Prime[i]-a] = 1;
tmp++;
}
}
for(int i = 0; i < len; ++i)
{
if(!sign[i])
num++;
}
if(a==1)
num--;
printf("Case %d: %d\n",++kase,num);
}
return 0;
}