//迪杰斯特拉算法 #include <iostream> #include <vector> #include <queue> #include <limits.h> using namespace std; struct Edge { int to; int length, price; Edge(int t, int l, int p) : to(t), length(l), price(p) {} }; struct Point { int number; int distance; Point(int n, int d) : number(n), distance(d) {} //用于priority_queue优先级判断,从距离从小到大排序 bool operator<(Point p) const { return distance < p.distance; } }; vector<Edge> graph[1001]; int dis[1001];//从start到某点的距离 int cost[1001];//从start到某点的花费 int n,m; //迪杰斯特拉算法 void Dijkstra(int start ,int n){ //从start出发到任意点,初始状态为不可达 for(int i=1;i<=n;i++) dis[i]=INT_MAX; dis[start]=0; //cost为最短路径的花费,无需像dis一样初始化,找到最短路径同时更新即可 cost[start]=0; //优先队列:根据优先级大小,队列首部为优先级最高的元素,依据堆排序(队列中的元素为大/小根堆) //该队列按照路径长度从小到大排序 priority_queue<Point> pq; pq.push(Point(start,0)); while (!pq.empty()) { Point p = pq.top(); int x = p.number; pq.pop(); for(auto y:graph[x]){ //x点经过了某边到达y,跟之前到达y的最短路径大小相同,更新cost //举例子:1到2到3,距离2花费4,1到4到3距离2花费2 if(dis[x]+y.length == dis[y.to]){ if(cost[x] + y.price <cost[y.to]) cost[y.to]=cost[x] + y.price; } //更新到某点的最短距离 //x点经过了某边到达y,比之前到达y的最短路径还短,更新 if(dis[x]+y.length<dis[y.to]){ dis[y.to]=dis[x]+y.length; cost[y.to]=cost[x]+y.price; pq.push(Point(y.to,dis[y.to])); } } } } int main(){ while (cin>>n>>m) { if(n==0) break; while (m--) { int from ,to,length,price; scanf("%d%d%d%d",&from,&to,&length,&price); graph[from].push_back(Edge(to,length,price)); graph[to].push_back(Edge(from,length,price)); } int start,end; cin>>start>>end; Dijkstra(start,n); cout<<dis[end]<<' '<<cost[end]<<endl; for(int i=1;i<=n;i++) graph[i].clear(); } }