LeetCode 0509. Fibonacci Number斐波那契数【Easy】【Python】【动态规划】
Problem
The Fibonacci numbers, commonly denoted F(n)
form a sequence, called the Fibonacci sequence, such that each number is the sum of the two preceding ones, starting from 0
and 1
. That is,
F(0) = 0, F(1) = 1 F(N) = F(N - 1) + F(N - 2), for N > 1.
Given N
, calculate F(N)
.
Example 1:
Input: 2 Output: 1 Explanation: F(2) = F(1) + F(0) = 1 + 0 = 1.
Example 2:
Input: 3 Output: 2 Explanation: F(3) = F(2) + F(1) = 1 + 1 = 2.
Example 3:
Input: 4 Output: 3 Explanation: F(4) = F(3) + F(2) = 2 + 1 = 3.
Note:
0 ≤ N
≤ 30.
问题
斐波那契数,通常用 F(n) 表示,形成的序列称为斐波那契数列。该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和。也就是:
F(0) = 0, F(1) = 1 F(N) = F(N - 1) + F(N - 2), 其中 N > 1.
给定 N,计算 F(N)。
示例 1:
输入:2 输出:1 解释:F(2) = F(1) + F(0) = 1 + 0 = 1.
示例 2:
输入:3 输出:2 解释:F(3) = F(2) + F(1) = 1 + 1 = 2.
示例 3:
输入:4 输出:3 解释:F(4) = F(3) + F(2) = 2 + 1 = 3.
提示:
0 ≤ N ≤ 30
思路
解法一:递归
fib(n) = fib(n - 1) + fib(n - 2) 注意,fib(n)会越界,所以最好是: fib(n) % 1000000007 = (fib(n - 1) % 1000000007 + fib(n - 2) % 1000000007) % 1000000007 但是因为 Python 中整形数字的大小限制取决计算机的内存(可理解为无限大),因此可不考虑大数越界问题。
Python3代码
class Solution: def fib(self, n: int) -> int: # solution one: 递归 if n == 0: return 0 if n == 1: return 1 return (self.fib(n - 1) + self.fib(n - 2)) % 1000000007
解法二:动态规划
时间复杂度: O(n)
空间复杂度: O(1)
Python3代码
class Solution: def fib(self, n: int) -> int: # solution two: 动态规划 dp_0, dp_1 = 0, 1 for _ in range(n): dp_0, dp_1 = dp_1, dp_0 + dp_1 return dp_0 % 1000000007