1、
2、
3、考虑先求出 的所有质因数,然后通过容斥来求所有与 不互质的 的和。
4、假设当前容斥算的质数是 ,那么就有 个该质数的倍数,即要求
,式子化简得,求和公式再化简即可在时间内算出结果。
Code:
#include <bits/stdc++.h>
#define ll long long
using namespace std;
const ll mod = 1e9 + 7;
vector<ll>v;
ll power(ll a, ll b)
{
ll res = 1;
while (b)
{
if (b & 1)
res = res * a % mod;
a = a * a % mod;
b >>= 1;
}
return res;
}
void get(ll k)
{
for (int i = 2; i * i <= k; i++)
{
if (k % i == 0)
{
v.push_back(i);
while (k % i == 0)
k /= i;
}
}
if (k > 1)
v.push_back(k);
}
ll n, m;
ll inv2 = power(2, mod - 2);
ll inv6 = power(6, mod - 2);
ll calc(ll k)
{
ll cnt = n / k;
ll res = ((k * k % mod) * (cnt * (cnt + 1) % mod) % mod) * ((2 * cnt + 1) * inv6 % mod) % mod + (cnt * (cnt + 1) % mod) * (k * inv2 % mod) % mod;
return res % mod;
}
int main()
{
while (scanf("%lld%lld", &n, &m) > 0)
{
v.clear();
get(m);
int sz = v.size();
ll ans = 0;
for (int i = 0; i < (1 << sz); i++)
{
int num = 1, cishu = 0;
for (int j = 0; j < sz; j++)
{
if (i & (1 << j))
{
num *= v[j];
cishu++;
}
}
if (cishu & 1)
ans = (ans - calc(num) + mod) % mod;
else
ans = (ans + calc(num)) % mod;
}
printf("%lld\n", ans);
}
}
计算每条边的贡献,即两边点的个数的乘积,然后再乘这条边的长度,总和就是答案
Code:
#include <bits/stdc++.h>
#define ll long long
using namespace std;
const int MAXN = 1e5 + 5;
const ll mod = 1e9 + 7;
struct edge
{
int to;
ll w;
int nex;
}e[MAXN * 2];
int head[MAXN], tot = 1;
void add(int a, int b, ll c)
{
e[tot] = edge{ b,c,head[a] };
head[a] = tot++;
}
int num[MAXN], n;
bool vis[MAXN];
void init()
{
memset(head, -1, sizeof(head));
tot = 1;
}
ll ans = 0;
#define Pair pair<int,int>
map<Pair,ll>mp;
void dfs(int u, int fa)
{
num[u] = 1;
for (int i = head[u]; i + 1; i = e[i].nex)
{
int v = e[i].to;
if (v != fa)
{
dfs(v, u);
num[u] += num[v];
ll ad = 1LL * (n - num[v]) * num[v] % mod;
if (u < v)
ad *= mp[Pair{ u,v }];
else
ad *= mp[Pair{ v,u }];
ad %= mod;
ans = (ans + ad) % mod;
}
}
}
int main()
{
init();
int a, b;
ll c;
scanf("%d", &n);
for (int i = 1; i < n; i++)
{
scanf("%d%d%lld", &a, &b, &c);
add(a, b, c);
add(b, a, c);
if (a > b)
swap(a, b);
mp[Pair{ a,b }] = c;
}
dfs(1, 0);
printf("%lld\n", ans);
}
莫队算法,考虑将所求的作为单独一项 即 ,为了方便,下面将使用 来表示 。
预处理阶乘和阶乘的逆元
Code:
#include <bits/stdc++.h>
#define ll long long
using namespace std;
const ll mod = 1e9 + 7;
const int MAXN = 1e5 + 5;
struct node
{
int index;
int n;
int m;
}in[MAXN];
int id[105];
ll fac[MAXN], inv[MAXN];
ll ans[MAXN];
ll power(ll a, ll b)
{
ll res = 1;
while (b)
{
if (b & 1)
res = res * a % mod;
a = a * a % mod;
b >>= 1;
}
return res;
}
void init()
{
fac[0] = fac[1] = 1;
for (int i = 2; i < MAXN; i++)
fac[i] = fac[i - 1] * i % mod;
inv[0] = inv[1] = 1;
inv[100000] = power(fac[100000], mod - 2);
for (int i = 99999; i > 1; i--)
inv[i] = inv[i + 1] * (i + 1) % mod;
}
ll comb(ll a, ll b)
{
if (a < b || b < 0)
return 0;
ll res = fac[a] * inv[b] % mod * inv[a - b] % mod;
return res;
}
ll inv2 = (mod + 1) / 2;
int unit;
int main()
{
init();
int num;
scanf("%d", &num);
for (int i = 0; i < num; i++)
{
in[i].index = i;
scanf("%d%d", &in[i].n, &in[i].m);
}
unit = sqrt(num);
sort(in, in + num, [](node q, node w) {
if (q.n / unit == w.n / unit)
return q.m < w.m;
return q.n < w.n;
});
int a = 0, b = -1;
ll res = 0;
for (int i = 0; i < num; i++)
{
while (a < in[i].n)
{
res = (res * 2 - comb(a, b) + mod) % mod;
a++;
}
while (a > in[i].n)
{
res = ((res + comb(a - 1, b)) % mod * inv2) % mod;
a--;
}
while (b < in[i].m)
{
res = (res + comb(a, b + 1)) % mod;
b++;
}
while (b > in[i].m)
{
res = (res - comb(a, b) + mod) % mod;
b--;
}
ans[in[i].index] = res * power(inv2, in[i].n) % mod;
}
for (int i = 0; i < num; i++)
printf("%lld\n", ans[i]);
}