思路:
- 从原式到第一个等式,神奇操作....... 当作结论用.
- 爆int了.难受
当然可以再优化复杂度到
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll N=1e6+6;
ll MOD=1e9+7;
ll inv[N];
ll init(){
inv[1] = 1;
for(ll i = 2; i < N; i ++){
inv[i] = (MOD - MOD / i) * 1ll * inv[MOD % i] % MOD;
}
}
ll phi[N];
void Euler(){
phi[1] = 1;
for(ll i = 2; i < N; i ++){
if(!phi[i]){
for(ll j = i; j < N; j += i){
if(!phi[j]) phi[j] = j;
phi[j] = phi[j] / i * (i-1);
}
}
}
}
ll mu[N], vis[N], prime[N];
ll tot;//用来记录prime的个数
ll sum[N];
void init1(){
mu[1] = 1;
for(ll i = 2; i < N; i ++){
if(!vis[i]){
prime[tot ++] = i;
mu[i] = -1;
}
for(ll j = 0; j < tot && i * prime[j] < N; j ++){
vis[i * prime[j]] = 1;
if(i % prime[j]) mu[i * prime[j]] = -mu[i];
else{
mu[i * prime[j]] = 0;
break;
}
}
}
for(ll i=1;i<=N-1;i++) sum[i]=sum[i-1]+mu[i],sum[i]%=MOD;
}
ll work(int m,int n,int d){
n/=d,m/=d;
ll ans=0;
int mn=min(n,m);
for(int i=1;i<=mn;i++){
int ed=min(n/(n/i),m/(m/i));
ans+=1ll*(sum[ed]-sum[i-1])*(n/i)%MOD*(m/i);
ans%=MOD;ans+=MOD;ans%=MOD;
i=ed;
}
return ans;
}
int main(void){
int T;
Euler();
init1();
scanf("%d",&T);
while(T--){
int m,n;
scanf("%d%d%lld",&m,&n,&MOD);
init();
ll ans=0;
int mn=min(n,m);
for(int d=1;d<=mn;d++){
ans+=1ll*d*inv[phi[d]]%MOD*work(m,n,d);
ans%=MOD;
}
printf("%lld\n",ans);
}
return 0;
}