树状数组求逆序数
解题思路
我们转换问题,x要比y最少一门排名高,y也对x同样如此。
那么就变成了,x有2门比y排名高,或者x2门比y排名低。因为排名不可能相同。
那么题目就变成了求逆序数问题,可以按照某一门排名去放另外一门成绩,求到的逆序数就是只看这两门的情况。
那么对于合理的x,y找到排名高,和排名低各一次,直接把答案除以2。
#pragma GCC target("avx,sse2,sse3,sse4,popcnt")
#pragma GCC optimize("O2,O3,Ofast,inline,unroll-all-loops,-ffast-math")
#include <bits/stdc++.h>
using namespace std;
#define js ios::sync_with_stdio(false);cin.tie(0); cout.tie(0)
typedef long long ll; typedef unsigned long long ull; typedef long double ld;
const ll MOD = 1e9 + 7;
inline ll read() { ll s = 0, w = 1; char ch = getchar(); for (; !isdigit(ch); ch = getchar()) if (ch == '-') w = -1; for (; isdigit(ch); ch = getchar()) s = (s << 1) + (s << 3) + (ch ^ 48); return s * w; }
inline void write(ll x) { if (!x) { putchar('0'); return; } char F[40]; ll tmp = x > 0 ? x : -x; if (x < 0)putchar('-'); int cnt = 0; while (tmp > 0) { F[cnt++] = tmp % 10 + '0'; tmp /= 10; } while (cnt > 0)putchar(F[--cnt]); }
inline ll gcd(ll x, ll y) { return y ? gcd(y, x % y) : x; }
ll qpow(ll a, ll b) { ll ans = 1; while (b) { if (b & 1) ans *= a; b >>= 1; a *= a; } return ans; } ll qpow(ll a, ll b, ll mod) { ll ans = 1; while (b) { if (b & 1)(ans *= a) %= mod; b >>= 1; (a *= a) %= mod; }return ans % mod; }
inline int lowbit(int x) { return x & (-x); }
const int N = 2e5 + 7;
int a[N], b[N], c[N];
int tmp[N], sum[N];
int n;
void add(int i, int x) {
for (; i <= n; i += lowbit(i)) sum[i] += x;
}
ll query(int i) {
ll ans = 0;
for (; i; i -= lowbit(i)) ans += sum[i];
return ans;
}
ll solve(int a[], int b[]) {
memset(sum, 0, sizeof(sum));
for (int i = 1; i <= n; ++i) tmp[a[i]] = b[i]; //桶排对a[i]的序列放的b[i]数组求逆序数
ll ans = 0;
for (int i = 1; i <= n; ++i) {
ans += query(n) - query(tmp[i]); //求逆序数
add(tmp[i], 1);
}
return ans;
}
int main() {
n = read();
for (int i = 1; i <= n; ++i) a[i] = read(), b[i] = read(), c[i] = read();
ll ans = solve(a, b) + solve(a, c) + solve(b, c);
write(ans >> 1);
return 0;
} 
京公网安备 11010502036488号