题目所求三个部分
1.斐波那契
2.n!在m进制下末尾零的个数
3.N皇后问题
前导
一:求n!中质因子p的个数
基于事实:n!的质因子p的个数等于:1~n中p的倍数(n/p)加上(n/p)!中质因子p的个数
递归代码:
ll getcnt(ll p, ll n) { if (n < p) return 0; return n / p + getcnt(p, n / p); }
转换为非递归代码:
ll getcnt(ll p, ll n) { //求x!有几个p ll res(0); while (n) res += n / p, n /= p; return res; }
二:求n!在m进制末尾零的个数
总代码如下
#pragma warning (disable :4996) #include <bits/stdc++.h> using namespace std; typedef long long ll; const double PI = cos(-1.0); const double eps = 1e-10; #define For(i,n,m) for(int i=n;i<=m;++i) ll x, m; ll d_cnt[108], a_cnt[108]; ll prime[] = { 0, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97 }; ll res[] = { 0,1,0,0,2,10,4,40,92,352,724,2680,14200,73712 }; ll fi[108]; ll getcnt(ll p, ll x) { //求x!有几个质因数p ll res(0); while (x) res += x / p, x /= p; return res; } void m_solve() { ll mm(m), k(1e18); for (int i = 1; prime[i] <= mm; ++i) { while (mm % prime[i] == 0) ++a_cnt[prime[i]], mm /= prime[i]; } for (int i = 1; i <= 25; ++i) { if (a_cnt[prime[i]]) d_cnt[prime[i]] = getcnt(prime[i], x); } for (int i = 1; i <= 25; ++i) { if (a_cnt[prime[i]]) k = min(k, d_cnt[prime[i]] / a_cnt[prime[i]]); } cout << k << "\n"; } void z_solve() { ll z = x % (min(13ll, m)) + 1; cout << res[z] << "\n"; } int main() { ios::sync_with_stdio(false), cin.tie(NULL), cout.tie(NULL); cin >> x >> m; fi[1] = 1, fi[2] = 1; for (int i = 3;; ++i) { fi[i] = fi[i - 1] + fi[i - 2]; if (fi[i] > 1e18) break; } bool f = false; for (int i = 1;; ++i) { if (fi[i] > 1e18) break; if (fi[i] == x) { f = true; break; } } if (f) m_solve(); else z_solve(); return 0; }