Tavak and Seyyed are good friends. Seyyed is very funny and he told Tavak to solve the following problem instead of longest-path.

You are given l and r. For all integers from l to r, inclusive, we wrote down all of their integer divisors except 1. Find the integer that we wrote down the maximum number of times.

Solve the problem to show that it's not a NP problem.

Input

The first line contains two integers l and r (2 ≤ l ≤ r ≤ 109).

Output

Print single integer, the integer that appears maximum number of times in the divisors.

If there are multiple answers, print any of them.

Examples

Input
19 29
Output
2
Input
3 6
Output
3

Note

Definition of a divisor: https://www.mathsisfun.com/definitions/divisor-of-an-integer-.html

The first example: from 19 to 29 these numbers are divisible by 2: {20, 22, 24, 26, 28}.

The second example: from 3 to 6 these numbers are divisible by 3: {3, 6}.

 

思路:分两种情况,

1、R-L<=1 的输出L或者R其中的任意一个。

2、R-L>=2 那么这个区间里 能被2整除的数一定是最多的数中之一个,因为相邻的两个数必然有一个是偶数,那么偶数就可以被2整除。

 

我的AC代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <vector>
#define rep(i,x,n) for(int i=x;i<n;i++)
#define repd(i,x,n) for(int i=x;i<=n;i++)
#define pii pair<int,int>
#define pll pair<long long ,long long>
#define gbtb ios::sync_with_stdio(false),cin.tie(0),cout.tie(0)
#define MS0(X) memset((X), 0, sizeof((X)))
#define MSC0(X) memset((X), '\0', sizeof((X)))
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define gg(x) getInt(&x)
using namespace std;
typedef long long ll;
inline void getInt(int* p);
const int maxn=1000010;
const int inf=0x3f3f3f3f;
/*** TEMPLATE CODE * * STARTS HERE ***/

int main()
{
    ll l,r;
    cin>>l>>r;
    if(l==r)
    {
        cout<<l<<endl;
    }else
    {
        if(r-l>=2)
        {
            cout<<2<<endl;
        }else
        {
            cout<<l<<endl;
        }
    }
    return 0;
}

inline void getInt(int* p) {
    char ch;
    do {
        ch = getchar();
    } while (ch == ' ' || ch == '\n');
    if (ch == '-') {
        *p = -(getchar() - '0');
        while ((ch = getchar()) >= '0' && ch <= '9') {
            *p = *p * 10 - ch + '0';
        }
    }
    else {
        *p = ch - '0';
        while ((ch = getchar()) >= '0' && ch <= '9') {
            *p = *p * 10 + ch - '0';
        }
    }
}