K L2-3 新旷野地带
题目地址;
基本思路:
比较简单的组合问题,我们枚举放个极巨化坑,那么每次我们从
行里选
行
,然后每次多选定了一列,接下来能选择的列数就会减少一,也就是能得到
也就是
,枚举
然后求个逆元算答案就好了。
参考代码:
#pragma GCC optimize(2)
#pragma GCC optimize(3)
#include <bits/stdc++.h>
using namespace std;
#define IO std::ios::sync_with_stdio(false)
#define int long long
#define rep(i, l, r) for (int i = l; i <= r; i++)
#define per(i, l, r) for (int i = l; i >= r; i--)
#define mset(s, _) memset(s, _, sizeof(s))
#define pb push_back
#define pii pair <int, int>
#define mp(a, b) make_pair(a, b)
#define INF 0x3f3f3f3f
inline int read() {
int x = 0, neg = 1; char op = getchar();
while (!isdigit(op)) { if (op == '-') neg = -1; op = getchar(); }
while (isdigit(op)) { x = 10 * x + op - '0'; op = getchar(); }
return neg * x;
}
inline void print(int x) {
if (x < 0) { putchar('-'); x = -x; }
if (x >= 10) print(x / 10);
putchar(x % 10 + '0');
}
const int maxn = 1e6 + 10;
int fact[maxn];
inline int qsm(int x,int n,int mod) {
int res = 1;
while (n > 0) {
if (n & 1) res = res * x % mod;
x = x * x % mod;
n >>= 1;
}
return res;
}
inline int mod_comb(int n,int k,int mod) {
if(n == k || k == 0) return 1;
return fact[n] * qsm(fact[k] * fact[n - k] % mod, mod - 2, mod) % mod;
}
const int mod = 1e9 + 7;
int n,m,k;
signed main() {
IO;
fact[0] = 0, fact[1] = 1;
for (int i = 2; i < maxn; i++) fact[i] = fact[i - 1] * i % mod;
cin >> n >> m >> k;
int ans = 0;
rep(i,1,k){
if(i > n || i > m) break;
int tmp = mod_comb(n,i,mod) * fact[m] % mod;
if( m - i > 0 ) tmp *= qsm(fact[m - i],mod - 2,mod) % mod;
tmp %= mod;
ans = (ans + tmp) % mod;
}
cout << ans << '\n';
return 0;
}
京公网安备 11010502036488号