每日三百行代码 第十二天

递归

如何理解“递归”?

有两个最难理解的知识点,一个是动态规划,另一个就是递归
递归是一种应用非常广泛的算法(或者编程技巧)。之后我们要讲的很多数据结构和算法的编码实现都要用到递归,比如 DFS 深度优先搜索、前中后序二叉树遍历等等。

int f(int n) {
   
  if (n == 1) return 1;
  return f(n-1) + 1;
}

递归需要满足的三个条件

  1. 一个问题的解可以分解为几个子问题的解
  2. 这个问题与分解之后的子问题,除了数据规模不同,求解思路完全一样
  3. 存在递归终止条件

如何编写递归代码?

写递归代码的关键就是找到如何将大问题分解为小问题的规律,并且基于此写出递推公式,然后再推敲终止条件,最后将递推公式和终止条件翻译成代码。

编写递归代码的关键是,只要遇到递归,我们就把它抽象成一个递推公式,不用想一层层的调用关系,不要试图用人脑去分解递归的每个步骤。

递归代码要警惕堆栈溢出

函数调用会使用栈来保存临时变量。每调用一个函数,都会将临时变量封装为栈帧压入内存栈,等函数执行完成返回时,才出栈。系统栈或者虚拟机栈空间一般都不大。如果递归求解的数据规模很大,调用层次很深,一直压入栈,就会有堆栈溢出的风险。
那么,如何避免出现堆栈溢出呢?我们可以通过在代码中限制递归调用的最大深度的方式来解决这个问题。递归调用超过一定深度(比如 1000)之后,我们就不继续往下再递归了,直接返回报错。


// 全局变量,表示递归的深度。
int depth = 0;

int f(int n) {
   
  ++depth;
  if (depth > 1000) throw exception;
  
  if (n == 1) return 1;
  return f(n-1) + 1;
}

递归代码要警惕重复计算

从图中,我们可以直观地看到,想要计算 f(5),需要先计算 f(4) 和 f(3),而计算 f(4) 还需要计算 f(3),因此,f(3) 就被计算了很多次,这就是重复计算问题。

为了避免重复计算,我们可以通过一个数据结构(比如散列表)来保存已经求解过的 f(k)。当递归调用到 f(k) 时,先看下是否已经求解过了。如果是,则直接从散列表中取值返回,不需要重复计算。


public int f(int n) {
   
  if (n == 1) return 1;
  if (n == 2) return 2;
  
  // hasSolvedList可以理解成一个Map,key是n,value是f(n)
  if (hasSolvedList.containsKey(n)) {
   
    return hasSolvedList.get(n);
  }
  
  int ret = f(n-1) + f(n-2);
  hasSolvedList.put(n, ret);
  return ret;
}

在时间效率上,递归代码里多了很多函数调用,当这些函数调用的数量较大时,就会积聚成一个可观的时间成本。在空间复杂度上,因为递归调用一次就会在内存栈中保存一次现场数据,所以在分析递归代码空间复杂度时,需要额外考虑这部分的开销,比如我们前面讲到的电影院递归代码,空间复杂度并不是 O(1),而是 O(n)。

怎么将递归代码改写为非递归代码?

递归有利有弊,利是递归代码的表达力很强,写起来非常简洁;而弊就是空间复杂度高、有堆栈溢出的风险、存在重复计算、过多的函数调用会耗时较多等问题。所以,在开发过程中,我们要根据实际情况来选择是否需要用递归的方式来实现。

int f(int n) {
   //递归
  if (n == 1) return 1;
  return f(n-1) + 1;
}
int f(int n) {
   //非递归
  int ret = 1;
  for (int i = 2; i <= n; ++i) {
   
    ret = ret + 1;
  }
  return ret;
}

因为递归本身就是借助栈来实现的,只不过我们使用的栈是系统或者虚拟机本身提供的,我们没有感知罢了。如果我们自己在内存堆上实现栈,手动模拟入栈、出栈过程,这样任何递归代码都可以改写成看上去不是递归代码的样子。

但是这种思路实际上是将递归改为了“手动”递归,本质并没有变,而且也并没有解决前面讲到的某些问题,徒增了实现的复杂度。

我们平时调试代码喜欢使用 IDE 的单步跟踪功能,像规模比较大、递归层次很深的递归代码,几乎无法使用这种调试方式。对于递归代码,你有什么好的调试方法呢?
1.打印日志发现,递归值。
2.结合条件断点进行调试。


排列

插入排序和冒泡排序的时间复杂度相同,都是 O(n2),在实际的软件开发里,为什么我们更倾向于使用插入排序算法而不是冒泡排序算法呢?

如何分析一个“排序算法”?

排序算法的执行效率
1.)最好情况、最坏情况、平均情况时间复杂度
第一,有些排序算***区分,为了好对比,所以我们最好都做一下区分。第二,对于要排序的数据,有的接近有序,有的完全无序。有序度不同的数据,对于排序的执行时间肯定是有影响的,我们要知道排序算法在不同数据下的性能表现。

2.)时间复杂度的系数、常数 、低阶
实际的软件开发中,我们排序的可能是 10 个、100 个、1000 个这样规模很小的数据,所以,在对同一阶时间复杂度的排序算法性能对比的时候,我们就要把系数、常数、低阶也考虑进来。

3.)比较次数和交换(或移动)次数
基于比较的排序算法的执行过程,会涉及两种操作,一种是元素比较大小,另一种是元素交换或移动。所以,如果我们在分析排序算法的执行效率的时候,应该把比较次数和交换(或移动)次数也考虑进去。

排序算法的内存消耗

算法的内存消耗可以通过空间复杂度来衡量,排序算法也不例外。不过,针对排序算法的空间复杂度,我们还引入了一个新的概念,原地排序(Sorted in place)。原地排序算法,就是特指空间复杂度是 O(1) 的排序算法。我们今天讲的三种排序算法,都是原地排序算法。

排序算法的稳定性

针对排序算法,我们还有一个重要的度量指标,稳定性。这个概念是说,如果待排序的序列中存在值相等的元素,经过排序之后,相等元素之间原有的先后顺序不变。

比如我们有一组数据 2,9,3,4,8,3,按照大小排序之后就是 2,3,3,4,8,9。这组数据里有两个 3。经过某种排序算法排序之后,如果两个 3 的前后顺序没有改变,那我们就把这种排序算法叫作稳定的排序算法;如果前后顺序发生变化,那对应的排序算法就叫作不稳定的排序算法


冒泡排序(Bubble Sort)
冒泡排序只会操作相邻的两个数据。每次冒泡操作都会对相邻的两个元素进行比较,看是否满足大小关系要求。如果不满足就让它俩互换。一次冒泡会让至少一个元素移动到它应该在的位置,重复 n 次,就完成了 n 个数据的排序工作。

// 冒泡排序,a表示数组,n表示数组大小
public void bubbleSort(int[] a, int n) {
   
  if (n <= 1) return;
 
 for (int i = 0; i < n; ++i) {
   
    // 提前退出冒泡循环的标志位
    boolean flag = false;
    for (int j = 0; j < n - i - 1; ++j) {
   
      if (a[j] > a[j+1]) {
    // 交换
        int tmp = a[j];
        a[j] = a[j+1];
        a[j+1] = tmp;
        flag = true;  // 表示有数据交换 
      }
    }
    if (!flag) break;  // 没有数据交换,提前退出
  }
}

第一,冒泡排序是原地排序算法吗?
冒泡的过程只涉及相邻数据的交换操作,只需要常量级的临时空间,所以它的空间复杂度为 O(1),是一个原地排序算法。

第二,冒泡排序是稳定的排序算法吗?
在冒泡排序中,只有交换才可以改变两个元素的前后顺序。为了保证冒泡排序算法的稳定性,当有相邻的两个元素大小相等的时候,我们不做交换,相同大小的数据在排序前后不会改变顺序,所以冒泡排序是稳定的排序算法。

第三,冒泡排序的时间复杂度是多少?
最好情况下,要排序的数据已经是有序的了,我们只需要进行一次冒泡操作,就可以结束了,所以最好情况时间复杂度是 O(n)。而最坏的情况是,要排序的数据刚好是倒序排列的,我们需要进行 n 次冒泡操作,所以最坏情况时间复杂度为 O(n2)。


插入排序(Insertion Sort)
已排序区间和未排序区间。初始已排序区间只有一个元素,就是数组的第一个元素。插入算法的核心思想是取未排序区间中的元素,在已排序区间中找到合适的插入位置将其插入,并保证已排序区间数据一直有序。重复这个过程,直到未排序区间中元素为空,算法结束。

插入排序也包含两种操作,一种是元素的比较,一种是元素的移动。当我们需要将一个数据 a 插入到已排序区间时,需要拿 a 与已排序区间的元素依次比较大小,找到合适的插入位置。找到插入点之后,我们还需要将插入点之后的元素顺序往后移动一位,这样才能腾出位置给元素 a 插入。


// 插入排序,a表示数组,n表示数组大小
public void insertionSort(int[] a, int n) {
   
  if (n <= 1) return;

  for (int i = 1; i < n; ++i) {
   
    int value = a[i];
    int j = i - 1;
    // 查找插入的位置
    for (; j >= 0; --j) {
   
      if (a[j] > value) {
   
        a[j+1] = a[j];  // 数据移动
      } else {
   
        break;
      }
    }
    a[j+1] = value; // 插入数据
  }
}

第一,插入排序是原地排序算法吗?
从实现过程可以很明显地看出,插入排序算法的运行并不需要额外的存储空间,所以空间复杂度是 O(1),也就是说,这是一个原地排序算法。

第二,插入排序是稳定的排序算法吗?
在插入排序中,对于值相同的元素,我们可以选择将后面出现的元素,插入到前面出现元素的后面,这样就可以保持原有的前后顺序不变,所以插入排序是稳定的排序算法。

第三,插入排序的时间复杂度是多少?
如果要排序的数据已经是有序的,我们并不需要搬移任何数据。
如果我们从尾到头在有序数据组里面查找插入位置,每次只需要比较一个数据就能确定插入的位置。所以这种情况下,最好是时间复杂度为 O(n)。注意,这里是从尾到头遍历已经有序的数据。

如果数组是倒序的,每次插入都相当于在数组的第一个位置插入新的数据,所以需要移动大量的数据,所以最坏情况时间复杂度为 O(n2)

对于插入排序来说,每次插入操作都相当于在数组中插入一个数据,循环执行 n 次插入操作,所以平均时间复杂度为 O(n2)


选择排序(Selection Sort)

选择排序算法的实现思路有点类似插入排序,也分已排序区间和未排序区间。但是选择排序每次会从未排序区间中找到最小的元素,将其放到已排序区间的末尾。

首先,选择排序空间复杂度为 O(1),是一种原地排序算法。选择排序的最好情况时间复杂度、最坏情况和平均情况时间复杂度都为 O(n2)。

选择排序是一种不稳定的排序算法。


冒泡排序、插入排序、选择排序这三种排序算法,它们的时间复杂度都是 O(n2),比较高,适合小规模数据的排序。

时间复杂度为 O(nlogn) 的排序算法: 归并排序快速排序

归并排序和快速排序都用到了分治思想,非常巧妙。我们可以借鉴这个思想,来解决非排序的问题.。



快速排序的原理

我们再来看快速排序算法(Quicksort),我们习惯性把它简称为“快排”。快排利用的也是分治思想。

快排的思想是这样的:如果要排序数组中下标从 p 到 r 之间的一组数据,我们选择 p 到 r 之间的任意一个数据作为 pivot(分区点)。

我们遍历 p 到 r 之间的数据,将小于 pivot 的放到左边,将大于 pivot 的放到右边,将 pivot 放到中间。经过这一步骤之后,数组 p 到 r 之间的数据就被分成了三个部分,前面 p 到 q-1 之间都是小于 pivot 的,中间是 pivot,后面的 q+1 到 r 之间是大于 pivot 的。

根据分治、递归的处理思想,我们可以用递归排序下标从 p 到 q-1 之间的数据和下标从 q+1 到 r 之间的数据,直到区间缩小为 1,就说明所有的数据都有序了。

递推公式:
quick_sort(p…r) = quick_sort(p…q-1) + quick_sort(q+1… r)

终止条件:
p >= r
// 快速排序,A是数组,n表示数组的大小
quick_sort(A, n) {
   
  quick_sort_c(A, 0, n-1)
}
// 快速排序递归函数,p,r为下标
quick_sort_c(A, p, r) {
   
  if p >= r then return
  
  q = partition(A, p, r) // 获取分区点
  quick_sort_c(A, p, q-1)
  quick_sort_c(A, q+1, r)
}

归并排序中有一个 merge() 合并函数,我们这里有一个 partition() 分区函数。partition() 分区函数实际上我们前面已经讲过了,就是随机选择一个元素作为 pivot(一般情况下,可以选择 p 到 r 区间的最后一个元素),然后对 A[p…r]分区,函数返回 pivot 的下标。

如果我们不考虑空间消耗的话,partition() 分区函数可以写得非常简单。我们申请两个临时数组 X 和 Y,遍历 A[p…r],将小于 pivot 的元素都拷贝到临时数组 X,将大于 pivot 的元素都拷贝到临时数组 Y,最后再将数组 X 和数组 Y 中数据顺序拷贝到 A[p…r]。

但是,如果按照这种思路实现的话,partition() 函数就需要很多额外的内存空间,所以快排就不是原地排序算法了。如果我们希望快排是原地排序算法,那它的空间复杂度得是 O(1),那 partition() 分区函数就不能占用太多额外的内存空间,我们就需要在 A[p…r]的原地完成分区操作。


partition(A, p, r) {
   
  pivot := A[r]
  i := p
  for j := p to r-1 do {
   
    if A[j] < pivot {
   
      swap A[i] with A[j]
      i := i+1
    }
  }
  swap A[i] with A[r]
  return i

这里的处理有点类似选择排序。我们通过游标 i 把 A[p…r-1]分成两部分。A[p…i-1]的元素都是小于 pivot 的,我们暂且叫它“已处理区间”,A[i…r-1]是“未处理区间”。我们每次都从未处理的区间 A[i…r-1]中取一个元素 A[j],与 pivot 对比,如果小于 pivot,则将其加入到已处理区间的尾部,也就是 A[i]的位置。

在数组某个位置插入元素,需要搬移数据,非常耗时。当时我们也讲了一种处理技巧,就是交换,在 O(1) 的时间复杂度内完成插入操作。这里我们也借助这个思想,只需要将 A[i]与 A[j]交换,就可以在 O(1) 时间复杂度内将 A[j]放到下标为 i 的位置。



可以发现,归并排序的处理过程是由下到上的,先处理子问题,然后再合并。而快排正好相反,它的处理过程是由上到下的,先分区,然后再处理子问题。归并排序虽然是稳定的、时间复杂度为 O(nlogn) 的排序算法,但是它是非原地排序算法。我们前面讲过,归并之所以是非原地排序算法,主要原因是合并函数无法在原地执行。快速排序通过设计巧妙的原地分区函数,可以实现原地排序,解决了归并排序占用太多内存的问题。

快速排序的性能分析

快排也是用递归来实现的。对于递归代码的时间复杂度,我前面总结的公式,这里也还是适用的。如果每次分区操作,都能正好把数组分成大小接近相等的两个小区间,那快排的时间复杂度递推求解公式跟归并是相同的。所以,快排的时间复杂度也是 O(nlogn)。

T(1) = C;   n=1时,只需要常量级的执行时间,所以表示为C。
T(n) = 2*T(n/2) + n; n>1

T(n) 在大部分情况下的时间复杂度都可以做到 O(nlogn),只有在极端情况下,才会退化到 O(n2)。


归并排序和快速排序是两种稍微复杂的排序算法,它们用的都是分治的思想,代码都通过递归来实现,过程非常相似。理解归并排序的重点是理解递推公式和 merge() 合并函数。

同理,理解快排的重点也是理解递推公式,还有 partition() 分区函数。归并排序算法是一种在任何情况下时间复杂度都比较稳定的排序算法,这也使它存在致命的缺点,即归并排序不是原地排序算法,空间复杂度比较高,是 O(n)。正因为此,它也没有快排应用广泛。

快速排序算法虽然最坏情况下的时间复杂度是 O(n2),但是平均情况下时间复杂度都是 O(nlogn)。不仅如此,快速排序算法时间复杂度退化到 O(n2) 的概率非常小,我们可以通过合理地选择 pivot 来避免这种情况。


归并排序(Merge Sort)

归并排序的原理

归并排序的核心思想还是蛮简单的。如果要排序一个数组,我们先把数组从中间分成前后两部分,然后对前后两部分分别排序,再将排好序的两部分合并在一起,这样整个数组就都有序了。

分治思想跟我们前面讲的递归思想很像。是的,分治算法一般都是用递归来实现的。分治是一种解决问题的处理思想,递归是一种编程技巧,这两者并不冲突。

前面我通过举例让你对归并有了一个感性的认识,又告诉你,归并排序用的是分治思想,可以用递归来实现。我们现在就来看看如何用递归代码来实现归并排序。


递推公式:
merge_sort(p…r) = merge(merge_sort(p…q), merge_sort(q+1…r))

终止条件:
p >= r 不用再继续分解

merge_sort(p…r) 表示,给下标从 p 到 r 之间的数组排序。我们将这个排序问题转化为了两个子问题,merge_sort(p…q) 和 merge_sort(q+1…r),其中下标 q 等于 p 和 r 的中间位置,也就是 (p+r)/2。当下标从 p 到 q 和从 q+1 到 r 这两个子数组都排好序之后,我们再将两个有序的子数组合并在一起,这样下标从 p 到 r 之间的数据就也排好序了。

//伪代码
// 归并排序算法, A是数组,n表示数组大小
merge_sort(A, n) {
   
  merge_sort_c(A, 0, n-1)
}

// 递归调用函数
merge_sort_c(A, p, r) {
   
  // 递归终止条件
  if p >= r  then return

  // 取p到r之间的中间位置q
  q = (p+r) / 2
  // 分治递归
  merge_sort_c(A, p, q)
  merge_sort_c(A, q+1, r)
  // 将A[p...q]和A[q+1...r]合并为A[p...r]
  merge(A[p...r], A[p...q], A[q+1...r])
}

merge(A[p…r], A[p…q], A[q+1…r]) 这个函数的作用就是,将已经有序的 A[p…q]和 A[q+1…r]合并成一个有序的数组,并且放入 A[p…r]。那这个过程具体该如何做呢

我们把 merge() 函数写成伪代码,就是下面这样:


merge(A[p...r], A[p...q], A[q+1...r]) {
   
  var i := p,j := q+1,k := 0 // 初始化变量i, j, k
  var tmp := new array[0...r-p] // 申请一个大小跟A[p...r]一样的临时数组
  while i<=q AND j<=r do {
   
    if A[i] <= A[j] {
   
      tmp[k++] = A[i++] // i++等于i:=i+1
    } else {
   
      tmp[k++] = A[j++]
    }
  }
  
  // 判断哪个子数组中有剩余的数据
  var start := i,end := q
  if j<=r then start := j, end:=r
  
  // 将剩余的数据拷贝到临时数组tmp
  while start <= end do {
   
    tmp[k++] = A[start++]
  }
  
  // 将tmp中的数组拷贝回A[p...r]
  for i:=0 to r-p do {
   
    A[p+i] = tmp[i]
  }
}

归并排序的性能分析

第一,归并排序是稳定的排序算法吗?

结合我前面画的那张图和归并排序的伪代码,你应该能发现,归并排序稳不稳定关键要看 merge() 函数,也就是两个有序子数组合并成一个有序数组的那部分代码。

在合并的过程中,如果 A[p…q]和 A[q+1…r]之间有值相同的元素,那我们可以像伪代码中那样,先把 A[p…q]中的元素放入 tmp 数组。这样就保证了值相同的元素,在合并前后的先后顺序不变。所以,归并排序是一个稳定的排序算法。

第二,归并排序的时间复杂度是多少?

归并排序涉及递归,时间复杂度的分析稍微有点复杂。我们正好借此机会来学习一下,如何分析递归代码的时间复杂度。

在递归那一节我们讲过,递归的适用场景是,一个问题 a 可以分解为多个子问题 b、c,那求解问题 a 就可以分解为求解问题 b、c。问题 b、c 解决之后,我们再把 b、c 的结果合并成 a 的结果。

如果我们定义求解问题 a 的时间是 T(a),求解问题 b、c 的时间分别是 T(b) 和 T( c),那我们就可以得到这样的递推关系式:

T(a) = T(b) + T(c) + K

不仅递归求解的问题可以写成递推公式,递归代码的时间复杂度也可以写成递推公式。

我们假设对 n 个元素进行归并排序需要的时间是 T(n),那分解成两个子数组排序的时间都是 T(n/2)。我们知道,merge() 函数合并两个有序子数组的时间复杂度是 O(n)。所以,套用前面的公式,归并排序的时间复杂度的计算公式就是:

T(1) = C;   n=1时,只需要常量级的执行时间,所以表示为C。
T(n) = 2*T(n/2) + n; n>1

T(n) = 2*T(n/2) + n
     = 2*(2*T(n/4) + n/2) + n = 4*T(n/4) + 2*n
     = 4*(2*T(n/8) + n/4) + 2*n = 8*T(n/8) + 3*n
     = 8*(2*T(n/16) + n/8) + 3*n = 16*T(n/16) + 4*n
     ......
     = 2^k * T(n/2^k) + k * n
     ......

通过这样一步一步分解推导,我们可以得到 T(n) = 2kT(n/2k)+kn。当 T(n/2^k)=T(1) 时,也就是 n/2^k=1,我们得到 k=log2n 。我们将 k 值代入上面的公式,得到 T(n)=Cn+nlog2n 。如果我们用大 O 标记法来表示的话,T(n) 就等于 O(nlogn)。所以归并排序的时间复杂度是 O(nlogn)。

第三,归并排序的空间复杂度是多少?

归并排序的时间复杂度任何情况下都是 O(nlogn),看起来非常优秀。(待会儿你会发现,即便是快速排序,最坏情况下,时间复杂度也是 O(n2)。)

这是因为归并排序的合并函数,在合并两个有序数组为一个有序数组时,需要借助额外的存储空间。

如果我们继续按照分析递归时间复杂度的方法,通过递推公式来求解,那整个归并过程需要的空间复杂度就是 O(nlogn)。

实际上,递归代码的空间复杂度并不能像时间复杂度那样累加。刚刚我们忘记了最重要的一点,那就是,尽管每次合并操作都需要申请额外的内存空间,但在合并完成之后,临时开辟的内存空间就被释放掉了。在任意时刻,CPU 只会有一个函数在执行,也就只会有一个临时的内存空间在使用。临时内存空间最大也不会超过 n 个数据的大小,所以空间复杂度是 O(n)。