打开博客发现上次咕咕咕了写一半。。想想还是补完,顺便复习下。

A、胖胖的牛牛

好像bfs也行。我这里用的是dfs,后来用了最短路解。
这里主要说最短路。将每个点分成上下左右四个点,用点,其中i、j是点坐标,k为其方向:0为左,1为上,2为右,3为下,(因为当i=n,j=n时,,所以是)然后用0点作为超级起点,作为超级终点,套下最短路就行了。
DFS:

#include <iostream>
#include <map>
#include <ctime>
#include <vector>
#include <climits>
#include <algorithm>
#include <random>
#include <cstring>
#include <cstdio>
#include <map>
#include <set>
#include <bitset>
#include <queue>
#define inf 0x3f3f3f3f
#define IOS ios_base::sync_with_stdio(0); cin.tie(0);
#define rep(i, a, n) for(register int i = a; i <= n; ++ i)
#define per(i, a, n) for(register int i = n; i >= a; -- i)
#define ONLINE_JUDGE
using namespace std;
typedef long long ll;
const int mod = 1e9 + 7;
template<typename T>void write(T x)
{
    if (x < 0)
    {
        putchar('-');
        x = -x;
    }
    if (x > 9)
    {
        write(x / 10);
    }
    putchar(x % 10 + '0');
}

template<typename T> void read(T& x)
{
    x = 0; char ch = getchar(); ll f = 1;
    while (!isdigit(ch)) { if (ch == '-')f *= -1; ch = getchar(); }
    while (isdigit(ch)) { x = x * 10 + ch - 48; ch = getchar(); }x *= f;
}
ll gcd(ll a, ll b) { return b == 0 ? a : gcd(b, a % b); }
ll lcm(ll a, ll b) { return a / gcd(a, b) * b; };
ll ksm(ll a, ll n) {//看是否要mod
    ll ans = 1;
    while (n) {
        if (n & 1) ans = (ans * a) % mod;
        a = a * a % mod;
        n >>= 1;
    }
    return ans % mod;
}
//==============================================================
const int maxn = 1e2 + 10;
int vis[maxn][maxn];
int dir[4][2] = { 1,0,-1,0,0,1,0,-1 };
//上下右左
ll ans = inf;
int xa, xb, ya, yb;
int n;
char mp[maxn][maxn];
void dfs(int x, int y,int pos, ll cnt) {
    if(cnt>=ans) return;//剪枝
    if(mp[x][y]=='B'){
        ans=min(ans,cnt);
        return ;
    }
    rep(i, 0, 3) {
        int dx = x + dir[i][0], dy = y + dir[i][1];
        if (dx <= 0 || dy <= 0 || dx > n || dy > n || mp[dx][dy] == 'x' || vis[dx][dy]) continue;
        vis[dx][dy] = 1;
        if (pos == -1 || i == pos) {
            dfs(dx, dy, i, cnt);
        }
        else {
            if ((i == 0 && pos == 1) || (i == 1 && pos == 0) || (i == 2 && pos == 3) || (i == 3 && pos == 2)) {
                dfs(dx, dy, i, cnt + 2);
            }
            else {
                dfs(dx, dy, i, cnt + 1);
            }
        }
        vis[dx][dy] = 0;
    }
}

int main()
{
#ifndef ONLINE_JUDGE
    freopen("in.txt", "r", stdin);
    freopen("out.txt", "w", stdout);
#endif
    //clock_t c1 = clock();
    //===========================================================
    read(n);
    rep(i, 1, n) {
        rep(j, 1, n) {
            cin >> mp[i][j];
            if (mp[i][j] == 'A') {
                xa = i, ya = j;
            }
            if (mp[i][j] == 'B') {
                xb = i, yb = j;
            }
        }
    }
    vis[xa][ya] = 1;
    dfs(xa, ya, -1, 0);
    if (ans >= n * n) {
        puts("-1");
    }
    else {
        write(ans);
    }
    //===========================================================
    //std::cerr << "Time:" << clock() - c1 << "ms" << std::endl;
    return 0;
}

最短路:

#include <iostream>
#include <map>
#include <ctime>
#include <vector>
#include <climits>
#include <algorithm>
#include <random>
#include <cstring>
#include <cstdio>
#include <map>
#include <set>
#include <bitset>
#include <queue>
#define inf 0x3f3f3f3f
#define IOS ios_base::sync_with_stdio(0); cin.tie(0);
#define rep(i, a, n) for(register int i = a; i <= n; ++ i)
#define per(i, a, n) for(register int i = n; i >= a; -- i)
//#define ONLINE_JUDGE
using namespace std;
typedef long long ll;
const int mod=1e9+7;
template<typename T>void write(T x)
{
    if(x<0)
    {
        putchar('-');
        x=-x;
    }
    if(x>9)
    {
        write(x/10);
    }
    putchar(x%10+'0');
}

template<typename T> void read(T &x)
{
    x = 0;char ch = getchar();ll f = 1;
    while(!isdigit(ch)){if(ch == '-')f*=-1;ch=getchar();}
    while(isdigit(ch)){x = x*10+ch-48;ch=getchar();}x*=f;
}
ll gcd(ll a,ll b){return b==0?a:gcd(b,a%b);}
ll lcm(ll a,ll b){return a/gcd(a,b)*b;};
ll ksm(ll a,ll n){//看是否要mod
    ll ans=1;
    while(n){
        if(n&1) ans=((ans%mod)*(a%mod))%mod;
        a=((a%mod)*(a%mod))%mod;
        n>>=1;
    }
    return ans%mod;
}
//==============================================================
#define int ll
int n;
const int maxn=105;
char mp[maxn][maxn];
struct Edge{
    int to,next,w;
}e[maxn*maxn*5*2];
int head[maxn*maxn*5],cnt;
void add(int x,int y,int w){
    e[cnt].w=w;
    e[cnt].to=y;
    e[cnt].next=head[x];
    head[x]=cnt++;
    e[cnt].w=w;
    e[cnt].to=x;
    e[cnt].next=head[y];
    head[y]=cnt++;
}
int dis[maxn*maxn*5*2];
struct node{
    int u,dis;
    node(int uu,int dd){
        u=uu;
        dis=dd;
    }
};
auto cmp=[](const node&a,const node&b){
    return a.dis>b.dis;
};
int vis[maxn*maxn*5*2];
priority_queue<node,vector<node>,decltype(cmp)> que(cmp);
int dij(int s,int end){
    memset(dis,inf,sizeof(dis));
    dis[s]=0;
    que.push(node(s,0));
    while(!que.empty()){
        node a=que.top();
        que.pop();
        int u=a.u;
        if(vis[u]) continue;
        vis[u]=1;
        for(int i=head[u];~i;i=e[i].next){
            int v=e[i].to;
            if(dis[v]>dis[u]+e[i].w){
                dis[v]=dis[u]+e[i].w;
                que.push(node(v,dis[v]));
            }
        }
    }
    return dis[end];
}

signed main()
{
    #ifndef ONLINE_JUDGE
    freopen("in.txt","r",stdin);
    freopen("out.txt","w",stdout);
    #endif
    //===========================================================
    memset(head,-1,sizeof(head));
    read(n);
    rep(i,1,n){
        rep(j,1,n){
            cin>>mp[i][j];
        }
    }
    /*rep(i,1,n){
        rep(j,1,n){
            cerr<<mp[i][j];
        }
        cerr<<endl;
    }*/
    //0 left 1 up 2 right 3 down
    rep(i,1,n){
        rep(j,1,n){
            if(mp[i][j]=='x') continue;
            int left=(i-1)*n+j,up=(i-1)*n+j+1*n*n,right=(i-1)*n+j+2*n*n,down=(i-1)*n+j+3*n*n;
            add(left,up,1),add(up,right,1),add(right,down,1),add(down,left,1);
            add(left,right,0),add(up,down,0);
            if(j>1){
                int lr=(i-1)*n+j-1+2*n*n;
                add(lr,left,0);
            }
            if(j<n){
                int rl=(i-1)*n+j+1+0*n*n;
                add(rl,right,0);
            }
            if(i>1){
                int ud=(i-2)*n+j+3*n*n;
                add(up,ud,0);
            }
            if(i<n){
                int du=(i+0)*n+j+1*n*n;
                add(du,down,0);
            }
            if(mp[i][j]=='A'){
                int ss=0;
                add(ss,left,0);
                add(ss,right,0);
                add(ss,up,0);
                add(ss,down,0);
            }
            if(mp[i][j]=='B'){
                int se=4*n*n+1;
                add(se,left,0);
                add(se,right,0);
                add(se,up,0);
                add(se,down,0);
            }
        }
    }
    int ans=dij(0,4*n*n+1);
    if(ans>=n*n){
        puts("-1");
    }
    else{
        write(ans);
    }
    //===========================================================
    return 0;
}

B.牛牛的零食

这道题很明显是组合数学。他要求的是[a,b]范围内符合条件的数,一般这种都是转化为cal(b)-cal(a-1),因为在1~n的范围内求某个数a的倍数的个数可以用n/a得到。这里还有其他的附加条件:不能被其它数整除,那么,考虑容斥原理:对于一个数n,可以被8整除的有n/8个,之后,不能被其他的数整除,其实应该要减去的是既是8的倍数,又是该数的倍数的,所以是lcm(8,x),按这样去除之后,显然会去多,所以再加回来,例如:
3
7764 6082 462
那就是,这个过程可以用dfs实现(也可以用队列数组或者二进制)。

#include <iostream>
#include <map>
#include <ctime>
#include <vector>
#include <climits>
#include <algorithm>
#include <random>
#include <cstring>
#include <cstdio>
#include <map>
#include <set>
#include <bitset> 
#include <queue>
#define inf 0x3f3f3f3f
#define IOS ios_base::sync_with_stdio(0); cin.tie(0);
#define rep(i, a, n) for(register int i = a; i <= n; ++ i)
#define per(i, a, n) for(register int i = n; i >= a; -- i)
//#define ONLINE_JUDGE
using namespace std;
typedef long long ll;
const int mod=1e9+7;
template<typename T>void write(T x)
{
    if(x<0)
    {
        putchar('-');
        x=-x;
    }
    if(x>9)
    {
        write(x/10);
    }
    putchar(x%10+'0');
}

template<typename T> void read(T &x)
{
    x = 0;char ch = getchar();ll f = 1;
    while(!isdigit(ch)){if(ch == '-')f*=-1;ch=getchar();}
    while(isdigit(ch)){x = x*10+ch-48;ch=getchar();}x*=f;
}
ll gcd(ll a,ll b){return b==0?a:gcd(b,a%b);}
ll lcm(ll a,ll b){return a/gcd(a,b)*b;};
ll ksm(ll a,ll n){//看是否要mod 
    ll ans=1;
    while(n){
        if(n&1) ans=((ans%mod)*(a%mod))%mod;
        a=((a%mod)*(a%mod))%mod;
        n>>=1;
    }
    return ans%mod;
}
//==============================================================
#define int ll
int n,xs[20];
int a,b,ans;
void dfs(int x,int l,int s,int sig){
    if(l>n){
        ans+=sig*x/s;
        return ;
    }
    dfs(x,l+1,s,sig);
    dfs(x,l+1,(s*xs[l])/gcd(s,xs[l]),-sig);
}
int cal(int x){
    ans=0;
    dfs(x,1,8,1);
    return ans;
}

signed main()
{
    #ifndef ONLINE_JUDGE
    freopen("in.txt","r",stdin);
    freopen("out.txt","w",stdout);
    #endif
    //===========================================================
    read(n);
    rep(i,1,n) read(xs[i]);
    read(a),read(b);
    write(cal(b)-cal(a-1));
    //===========================================================
    return 0;
}

C.牛牛的最美味和最不美味的零食

这道题的正确做法应该是记住树的siz,然后根据左子树siz的大小选择跳左子树还是跳右子树。需要注意的是,在eat的时候,需要先用连个变量存下左子树的siz和右子树的siz,因为eat之后siz会改变,可能导致一次吃了两个糖,当然,也可以用else if,个人习惯。
另一种做法是看大佬的:用树状数组记录前面吃掉的糖果数,每次query的时候,二分查找到idx1-前缀和(idx1)==i和idx2-前缀和(idx2)==j,这个就是现在要找的这个区间的对应原始的断点的位置,之后就像普通查找一样query原始端点就行了,但复杂度会高一些。

#include <iostream>
#include <map>
#include <ctime>
#include <vector>
#include <climits>
#include <algorithm>
#include <random>
#include <cstring>
#include <cstdio>
#include <map>
#include <set>
#include <bitset> 
#include <queue>
#define inf 0x3f3f3f3f
#define IOS ios_base::sync_with_stdio(0); cin.tie(0);
#define rep(i, a, n) for(register int i = a; i <= n; ++ i)
#define per(i, a, n) for(register int i = n; i >= a; -- i)
#define ONLINE_JUDGE
using namespace std;
typedef long long ll;
const int mod=1e9+7;
template<typename T>void write(T x)
{
    if(x<0)
    {
        putchar('-');
        x=-x;
    }
    if(x>9)
    {
        write(x/10);
    }
    putchar(x%10+'0');
}

template<typename T> void read(T &x)
{
    x = 0;char ch = getchar();ll f = 1;
    while(!isdigit(ch)){if(ch == '-')f*=-1;ch=getchar();}
    while(isdigit(ch)){x = x*10+ch-48;ch=getchar();}x*=f;
}
int gcd(int a,int b){return b==0?a:gcd(b,a%b);}
int lcm(int a,int b){return a/gcd(a,b)*b;};
ll ksm(ll a,ll n){//看是否要mod 
    ll ans=1;
    while(n){
        if(n&1) ans=((ans%mod)*(a%mod))%mod;
        a=((a%mod)*(a%mod))%mod;
        n>>=1;
    }
    return ans%mod;
}
//==============================================================
#define int ll
#define lson (rt<<1)
#define rson (rt<<1|1)
#define pii pair<int,int>
int n,m;
const int maxn=1e6+10;
struct node{
    int siz,l,r,mi,ma;
}tree[maxn<<2];
void pushup(int rt){
    tree[rt].ma=max(tree[lson].ma,tree[rson].ma);
    tree[rt].mi=min(tree[lson].mi,tree[rson].mi);
    tree[rt].siz=(tree[lson].siz+tree[rson].siz);
}
void build(int l,int r,int rt){
    tree[rt].l=l,tree[rt].r=r;
    if(l==r){
        read(tree[rt].ma);
        tree[rt].mi=tree[rt].ma;
        tree[rt].siz=1;
        return ;
    }
    int m=(l+r)>>1;
    build(l,m,lson);
    build(m+1,r,rson);
    pushup(rt);
}

void eat(int tar,int rt){
    int l=tree[rt].l,r=tree[rt].r;
    if(l==r){
        tree[rt].siz=0;
        tree[rt].ma=-inf;
        tree[rt].mi=inf;
        return;
    }
    int siz1=tree[lson].siz;
    if(tar<=siz1) eat(tar,lson);
    if(tar>siz1) eat(tar-siz1,rson);
    pushup(rt);
}


pii query(int ql,int qr,int rt){
    if(ql<=1&&qr>=tree[rt].siz){
        return make_pair(tree[rt].mi,tree[rt].ma);
    }
    int ma=-inf,mi=inf;
    if(ql<=tree[lson].siz){
        pii t=query(ql,qr,lson);
        ma=max(ma,t.second);
        mi=min(mi,t.first);
    }
    if(qr>tree[lson].siz){
        pii t=query(ql-tree[lson].siz,qr-tree[lson].siz,rson);
        mi=min(mi,t.first);
        ma=max(ma,t.second);
    }
    return make_pair(mi,ma);
}


signed main()
{
    #ifndef ONLINE_JUDGE
    freopen("in.txt","r",stdin);
    freopen("out.txt","w",stdout);
    #endif
    //===========================================================
    read(n),read(m);
    build(1,n,1);
    while(m--){
        int opt;read(opt);
        if(opt==1){
            int k;read(k);
            eat(k,1);
        }
        if(opt==2){
            int i,j;read(i),read(j);
            pii ans=query(i,j,1);
            write(ans.first),putchar(' '),write(ans.second),putchar('\n');
        }
    }
    //===========================================================
    return 0;
}

D.瘦了的牛牛去旅游

这道题像不大明白Orz
首先看到数据范围,发现很小,又和最短路有关,我们想到的应该是Floyd。但这里求的是密度,我们还缺一个数,就是这条最短路他经过的路径数。俗话说的话:维度不够,再加一维?空间上也还可以,所以,我们就得到了整个状态dp[i][j][k],表示从i到j经过k条路径的最短路。这里其实算是一个分阶段贪心:对每个k,我们都选择i到j的最短路,记录下下来,然后,再遍历所有的k,选择其中最小的dp[i][j][k]/k作为ans[i][j]。

#include <iostream>
#include <map>
#include <ctime>
#include <vector>
#include <climits>
#include <algorithm>
#include <random>
#include <cstring>
#include <cstdio>
#include <map>
#include <set>
#include <bitset> 
#include <queue>
#define inf 0x3f3f3f3f
#define IOS ios_base::sync_with_stdio(0); cin.tie(0);
#define rep(i, a, n) for(register int i = a; i <= n; ++ i)
#define per(i, a, n) for(register int i = n; i >= a; -- i)
#define ONLINE_JUDGE
using namespace std;
typedef long long ll;
const int mod=1e9+7;
template<typename T>void write(T x)
{
    if(x<0)
    {
        putchar('-');
        x=-x;
    }
    if(x>9)
    {
        write(x/10);
    }
    putchar(x%10+'0');
}

template<typename T> void read(T &x)
{
    x = 0;char ch = getchar();ll f = 1;
    while(!isdigit(ch)){if(ch == '-')f*=-1;ch=getchar();}
    while(isdigit(ch)){x = x*10+ch-48;ch=getchar();}x*=f;
}
ll gcd(ll a,ll b){return b==0?a:gcd(b,a%b);}
ll lcm(ll a,ll b){return a/gcd(a,b)*b;};
ll ksm(ll a,ll n){//看是否要mod 
    ll ans=1;
    while(n){
        if(n&1) ans=((ans%mod)*(a%mod))%mod;
        a=((a%mod)*(a%mod))%mod;
        n>>=1;
    }
    return ans%mod;
}
//==============================================================
const int maxm=1e3+10;
const int maxn=55+10;
int n,m,q;
int G[maxn][maxn];
int dp[maxn][maxn][maxn];
double ans[maxn][maxn];
#include <iomanip>
int main()
{
    #ifndef ONLINE_JUDGE
    freopen("in.txt","r",stdin);
    freopen("out.txt","w",stdout);
    #endif
    //===========================================================
    read(n),read(m);
    memset(G,inf,sizeof(G));
    memset(dp,inf,sizeof(dp));
    rep(i,0,n){
        rep(j,0,n){
            ans[i][j]=(double) inf;//ans是double型,需要手写循环初始化
        }
    }
    while(m--){
        int a,b,c;
        read(a),read(b),read(c);
        G[a][b]=min(G[a][b],c);
        dp[a][b][1]=G[a][b];
    }
    rep(i,1,n) dp[i][i][0]=0;//边界条件
    rep(l,2,n){//枚举经过的路径数
        rep(k,1,n){//枚举中转结点
            rep(i,1,n){//枚举起点
                rep(j,1,n){//枚举中点
                    dp[i][j][l]=min(dp[i][j][l],dp[i][k][l-1]+G[k][j]);
                }
            }
        }
    }
    rep(i,1,n){
        rep(j,1,n){
            rep(k,1,n){
                if(dp[i][j][k]!=inf) ans[i][j]=min((1.0*dp[i][j][k])/k,ans[i][j]);//更新ans
            }
        }
    }
    int q;read(q);
    while(q--){
        int a,b;read(a),read(b);
        if(ans[a][b]!=inf)cout<<fixed<<setprecision(3)<<ans[a][b]<<endl;
        else puts("OMG!");
    }
    //===========================================================
    return 0;
}

E.只能吃土豆的牛牛

看到给的是3^n,就想到和二进制有关。我是这样想的:他要的是第k大,又是这样的3^n的形式,那么,可以看作是二进制串1、10、11……之间的大小比较,如,k=3,可以看作是第一小的1,第二小的10之后的第三小数11,这里的01串和这些土豆拿一部分出来的和是意义对应的,也就是说,一个二进制串可以对应某几个土豆的质量和,而二进制串的大小和土豆质量也是正相关的关系,所以,我们求第4大的土豆质量和,完全可以看到是100串,也就是这样取的结果(语无伦次)。所以,只需要对k进行二进制拆解就行了。

#include <iostream>
#include <map>
#include <ctime>
#include <vector>
#include <climits>
#include <algorithm>
#include <random>
#include <cstring>
#include <cstdio>
#include <map>
#include <set>
#include <bitset> 
#include <queue>
#define inf 0x3f3f3f3f
#define IOS ios_base::sync_with_stdio(0); cin.tie(0);
#define rep(i, a, n) for(register int i = a; i <= n; ++ i)
#define per(i, a, n) for(register int i = n; i >= a; -- i)
//#define ONLINE_JUDGE
using namespace std;
typedef long long ll;
const int mod=1e9+7;
template<typename T>void write(T x)
{
    if(x<0)
    {
        putchar('-');
        x=-x;
    }
    if(x>9)
    {
        write(x/10);
    }
    putchar(x%10+'0');
}

template<typename T> void read(T &x)
{
    x = 0;char ch = getchar();ll f = 1;
    while(!isdigit(ch)){if(ch == '-')f*=-1;ch=getchar();}
    while(isdigit(ch)){x = x*10+ch-48;ch=getchar();}x*=f;
}
ll gcd(ll a,ll b){return b==0?a:gcd(b,a%b);}
ll lcm(ll a,ll b){return a/gcd(a,b)*b;};
ll ksm(ll a,ll n){//看是否要mod 
    ll ans=1;
    while(n){
        if(n&1) ans=(ans*a)%mod;
        a=a*a%mod;
        n>>=1;
    }
    return ans%mod;
}
//==============================================================
ll t,k;

int main()
{
    #ifndef ONLINE_JUDGE
    freopen("in.txt","r",stdin);
    freopen("out.txt","w",stdout);
    #endif
    //clock_t c1 = clock();
    //===========================================================
    read(t);
    int kase=0;
    while(t--){
        ll ans=0;
        read(k);
        ll base=1;
        while(k){
            if(k&1) ans+=base;
            base*=3;
            k>>=1;
        }
        printf("Case #%d: %lld\n",++kase,ans);
    }
    //===========================================================
    //std::cerr << "Time:" << clock() - c1 << "ms" << std::endl;
    return 0;
}