http://poj.org/problem?id=1556
几何+最短路
先算出所有的n*4+2个点和3*n个边界,然后每次从n*4+2个点中取两个点,判断一下这两个点构成的线段是否与3*n个边界相交,如果不相交,那么表示“这条路”是可以走的,就加边,否则不加边,然后跑一遍最短路。
poj输出要%f,%lf 会错。
#include <iostream>
#include <stdio.h>
#include <math.h>
#include <vector>
#include <algorithm>
#include <string.h>
#include <queue>
const double eps = 1e-6;
const double PI = acos(-1.0); // PI = 180°= 3.14
using namespace std;
//判断符号
int sign(double x)
{
if (fabs(x) < eps)
return 0;
return x > 0 ? 1 : -1;
}
struct point
{
double x;
double y;
point operator + (const point& other) { return point{ x + other.x, y + other.y }; }
point operator - (const point& other) { return point{ x - other.x, y - other.y }; }
point operator * (double k) { return point{ x * k, y * k }; }
point operator / (double k) { return point{ x / k, y / k }; }
bool operator == (const point& other)
{
return sign(x - other.x) == 0 && sign(y - other.y) == 0;
}
bool operator < (const point& other)
{
if (fabs(x - other.x) < eps)
return y < other.y;
return x < other.x;
}
void scan() { scanf("%lf%lf", &x, &y); }
void print() { printf("%.2lf %.2lf\n", x, y); }
};
//点积
double dot(point a, point b)
{
return a.x * b.x + a.y * b.y;
}
//叉积
double cross(point a, point b)
{
return a.x * b.y - b.x * a.y;
}
//向量的长度 (可以计算两点距离
double getlen(point a)
{
return sqrt(a.x * a.x + a.y * a.y);
}
//判断线段a1-a2 b1-b2是否相交
//严格(不包括端点相交),如果要不严格,最后两行删掉=号
bool segment_inter(point a1, point a2, point b1, point b2)
{
return
max(a1.x, a2.x) >= min(b1.x, b2.x) &&
max(b1.x, b2.x) >= min(a1.x, a2.x) &&
max(a1.y, a2.y) >= min(b1.y, b2.y) &&
max(b1.y, b2.y) >= min(a1.y, a2.y) &&
sign(cross(b1 - a1, a2 - a1)) * sign(cross(b2 - a1, a2 - a1)) < 0 &&
sign(cross(a1 - b1, b2 - a1)) * sign(cross(a2 - b1, b2 - b1)) < 0;
}
struct line
{
point a;
point b;
void scan() { a.scan(); b.scan(); }
void print() { a.print(); b.print(); }
};
int n;
double in[15];
double a[15][4];
struct edge
{
int to;
double dis;
int nex;
}e[1550];
int head[1550], tot = 1;
bool vis[1550];
void add(int in, int to, double dis)
{
e[tot] = edge{ to,dis,head[in] };
head[in] = tot++;
//printf("%d %d %.2lf\n", in, to, dis);
}
double dis[1550];
#define Pair pair<double,int>
void dij()
{
memset(vis, false, sizeof(vis));
for (int i = 0; i < 1500; i++)
dis[i] = 100005;
priority_queue<Pair, vector<Pair>, greater<Pair> >q;
q.push(Pair{ 0,1 });
dis[1] = 0;
while (!q.empty())
{
Pair t = q.top();
q.pop();
if (vis[t.second])
continue;
vis[t.second] = true;
for (int i = head[t.second]; i + 1; i = e[i].nex)
{
int to = e[i].to;
if (dis[to] > dis[t.second] + e[i].dis)
{
dis[to] = dis[t.second] + e[i].dis;
q.push(Pair{ dis[to],to });
}
}
}
}
point dots[1550];
line que[1550];
int main()
{
while (true)
{
memset(head, -1, sizeof(head));
int m, dotcnt = 1, cnt = 0;
scanf("%d", &m);
n = 4 * m + 2;
if (m == -1)
return 0;
dots[dotcnt++] = point{ 0.0,5.0 };
for (int i = 1; i <= m; i++)
{
scanf("%lf%lf%lf%lf%lf", &in[i], &a[i][0], &a[i][1], &a[i][2], &a[i][3]);
que[cnt++] = line{ point{in[i],0.0}, point{in[i],a[i][0]} };
que[cnt++] = line{ point{in[i],a[i][1]}, point{in[i],a[i][2]} };
que[cnt++] = line{ point{in[i],a[i][3]}, point{in[i],10.0} };
for (int j = 0; j < 4; j++)
dots[dotcnt++] = point{in[i],a[i][j]};
}
dots[dotcnt++] = point{ 10.0,5.0 };
for (int i = 1; i < dotcnt; i++)
{
for (int j = i + 1; j < dotcnt; j++)
{
for (int k = 0; k < cnt; k++)
{
if (segment_inter(dots[i], dots[j], que[k].a, que[k].b))
goto qwe;
}
add(i, j, getlen(dots[i] - dots[j]));
qwe:;
}
}
dij();
printf("%.2f\n", dis[n]);
}
}