什么是消息队列?

消息(Message)是指在应用之间传送的数据,消息可以非常简单,比如只包含文本字符串,也可以更复杂,可能包含嵌入对象。 消息队列(Message Queue)是一种应用间的通信方式,消息发送后可以立即返回,有消息系统来确保信息的可靠传递,消息发布者只管把消息发布到MQ中而不管谁来取,消息使用者只管从MQ中取消息而不管谁发布的,这样发布者和使用者都不用知道对方的存在。

为什么使用消息队列?

从上面描述中可以看出消息队列是一种应用间的异步协作机制,那什么时候需要使用MQ呢? 以常见的订单系统为例子,用户点击【下单】按钮后的业务逻辑包括:扣减库存、生成相应的单据、发红包、发短信通知‘在业务发展初期这些逻辑可能放在一起同步执行,随着业务订单量增长,需要提升系统服务的性能,这时候可以将一些不需要立即生效的操作拆分出来异步执行,,比如发红包、发短信通知等。这种场景就可以用MQ,在下单的主流程(比如扣减库存、生成相应的单据)完成之后发送一条消息到MQ让主流程快速完结,而由另外的单独线程拉取MQ的消息(或者由MQ推送消息),当发现MQ中有发红包或者发短信之类的消息,执行相应的业务逻辑。

使用消息队列的好处?

(1)提高系统的响应速度:

使用消息队列,生产者一方,把消息往消息队列里一扔,就可以立马返回响应用户,无需等待处理结果。

(2)保证消息的传递:

如果发送消息时接收者不可用,消息队列会保留消息,直到成功的传递它。

(3)解耦:

只要信息格式不变,即使接收者的接口,位置,或者配置改变,也不会给发送者带来任何改变。消息发送者无需知道消息接收者是谁,使得系统设计更清晰。

什么是延迟队列?

延迟队列,顾名思义它是一种带有延迟功能的消息队列。

延迟队列应用场景?

1.当订单一直处于未支付状态时,如何及时的关闭订单

2.如何定期检查处于退款状态的订单是否已经退款成功

3.在订单长时间没有收到下游系统的状态通知的时候,如何实现阶梯式的同步订单状态的策略

4.在系统通知上游系统支付成功终态时,上游系统返回通知失败,如何进行异步通知实行分频率发送:15s 3m 10m 30m 30m 1h 2h 6h 15h

解决方案:

1.最简单的方式,定时扫表。 例如对于订单支付失效要求比较高的,每2S扫表一次检查过期的订单进行主动关单操作。优点是简单,缺点是每分钟全局扫表,浪费资源,如果遇到表数据订单量即将过期的订单量很大,会造成关单延迟。

2.使用RabbitMq或者其他MQ改造实现延迟队列: 优点是,开源,现成的稳定的实现方案,缺点是:MQ是一个消息中间件,如果团队技术栈本来就有MQ,那还好,如果不是,那为了延迟队列而去部署一套MQ成本有点大

3.使用Redis实现延迟队列: 使用Redis的Hashtable、zset、list来实现延迟队列

这里我们可以先看一下 有赞的延迟队列设计

1.设计图

alt

我们利用有赞的延迟队列设计进行改造

2.数据结构

ZING:DELAY_QUEUE:JOB_POOL: 是一个Hash_Table结构,里面存储了所有延迟队列的信息。KV结构:K=prefix+projectName,field=topic+jobId,V=CONENT;V由客户端传入的数据,消费的时候回传;

ZING:DELAY_QUEUE:BUCKET: 延迟队列的有序集合ZSET,存放K=ID和score为需要的执行时间戳,根据时间戳排序; ZING:DELAY_QUEUE:QUEUE LIST: 每个Topic一个LIST,list存放的都是当前需要被消费的JOB。

alt

3.任务的生命周期

1.新增一个JOB,会在ZING:DELAY_QUEUE:JOB_POOL中插入一条数据,记录了业务方消费方。ZING:DELAY_QUEUE:BUCKET也会插入一条记录,记录执行的时间戳

2.搬运线程会去ZING:DELAY_QUEUE:BUCKET中查找哪些执行时间戳的RunTimeMillis比现在的时间小,将这些记录全部删除;同时会解析出每个任务的Topic是什么,然后将这些任务PUSH到TOPIC对应的列表ZING:DELAY_QUEUE:QUEUE中

3.每个TOPIC的LIST都会有一个监听线程去批量获取LIST中的待消费数据,获取到的数据全部扔给这个TOPIC的消费线程池

4.消费线程池执行会去ZING:DELAY_QUEUE:JOB_POOL查找数据结构,返回给回调结构,执行回调方法。

4.设计要点

4.1 基本概念

1.JOB:需要异步处理的任务,是延迟队列里的基本单元。

2.Topic:一组相同类型Job的集合(队列)。供消费者来订阅

4.2 消息结构

每个JOB必须包含以下几个属性:

jobId:Job的唯一标识。用来检索和删除指定的Job信息

topic:Job类型。可以理解成具体的业务名称

delay:Job需要延迟的时间。单位:秒。(服务端会将其转换为绝对时间)

body:Job的内容,供消费者做具体的业务处理,以json格式存储

retry:失败重试次数

url:通知URL

5.设计细节

如何快速消费ZING:DELAY_QUEUE:QUEUE

最简单的实现方式就是使用定时器进行秒级扫描,为了保证消息执行的时效性,可以设置每1S请求Redis一次,判断队列中是否有待消费的JOB。但是这样会存在一个问题,如果queue中一直没有可消费的JOB,那频繁的扫描就失去了意义,也浪费了资源,幸好LIST中有一个BLPOP阻塞原语,如果list中有数据就会立马返回,如果没有数据就会一直阻塞在那里,直到有数据返回,可以设置阻塞的超时时间,超时会返回NULL;具体的实现方式及策略会在代码中进行具体的实现介绍。

避免定时导致的消息重复搬运及消费

1.使用Redis的分布式锁来控制消息的搬运,从而避免消息被重复搬运导致的问题

2.使用分布式锁来保证定时器的执行频率。

6.核心代码实现

6.1 技术说明

技术栈: SpringBoot,Redisson,Redis,分布式锁,定时器

注意: 本项目没有实现设计方案中的多Queue消费,只开启了一个QUEUE,这个待以后优化

6.2 核心实体

6.2.1 Job新增对象

/**
 * 消息结构
 *
 * @author 睁眼看世界
 * @date 2020年1月15日
 */
@Data
public class Job implements Serializable {

    private static final long serialVersionUID = 1L;

    /**
     * Job的唯一标识。用来检索和删除指定的Job信息
     */
    @NotBlank
    private String jobId;


    /**
     * Job类型。可以理解成具体的业务名称
     */
    @NotBlank
    private String topic;

    /**
     * Job需要延迟的时间。单位:秒。(服务端会将其转换为绝对时间)
     */
    private Long delay;

    /**
     * Job的内容,供消费者做具体的业务处理,以json格式存储
     */
    @NotBlank
    private String body;

    /**
     * 失败重试次数
     */
    private int retry = 0;

    /**
     * 通知URL
     */
    @NotBlank
    private String url;
}

6.2.2 Job删除对象

/**
 * 消息结构
 *
 * @author 睁眼看世界
 * @date 2020年1月15日
 */
@Data
public class JobDie implements Serializable {

    private static final long serialVersionUID = 1L;

    /**
     * Job的唯一标识。用来检索和删除指定的Job信息
     */
    @NotBlank
    private String jobId;


    /**
     * Job类型。可以理解成具体的业务名称
     */
    @NotBlank
    private String topic;
}

6.2 搬运线程

/**
 * 搬运线程
 *
 * @author 睁眼看世界
 * @date 2020年1月17日
 */
@Slf4j
@Component
public class CarryJobScheduled {

    @Autowired
    private RedissonClient redissonClient;

    /**
     * 启动定时开启搬运JOB信息
     */
    @Scheduled(cron = "*/1 * * * * *")
    public void carryJobToQueue() {
        System.out.println("carryJobToQueue --->");
        RLock lock = redissonClient.getLock(RedisQueueKey.CARRY_THREAD_LOCK);
        try {
            boolean lockFlag = lock.tryLock(LOCK_WAIT_TIME, LOCK_RELEASE_TIME, TimeUnit.SECONDS);
            if (!lockFlag) {
                throw new BusinessException(ErrorMessageEnum.ACQUIRE_LOCK_FAIL);
            }
            RScoredSortedSet<Object> bucketSet = redissonClient.getScoredSortedSet(RD_ZSET_BUCKET_PRE);
            long now = System.currentTimeMillis();
            Collection<Object> jobCollection = bucketSet.valueRange(0, false, now, true);
            List<String> jobList = jobCollection.stream().map(String::valueOf).collect(Collectors.toList());
            RList<String> readyQueue = redissonClient.getList(RD_LIST_TOPIC_PRE);
            readyQueue.addAll(jobList);
            bucketSet.removeAllAsync(jobList);
        } catch (InterruptedException e) {
            log.error("carryJobToQueue error", e);
        } finally {
            if (lock != null) {
                lock.unlock();
            }
        }
    }
}

6.4 消费线程

@Slf4j
@Component
public class ReadyQueueContext {

    @Autowired
    private RedissonClient redissonClient;

    @Autowired
    private ConsumerService consumerService;

    /**
     * TOPIC消费线程
     */
    @PostConstruct
    public void startTopicConsumer() {
        TaskManager.doTask(this::runTopicThreads, "开启TOPIC消费线程");
    }

    /**
     * 开启TOPIC消费线程
     * 将所有可能出现的异常全部catch住,确保While(true)能够不中断
     */
    @SuppressWarnings("InfiniteLoopStatement")
    private void runTopicThreads() {
        while (true) {
            RLock lock = null;
            try {
                lock = redissonClient.getLock(CONSUMER_TOPIC_LOCK);
            } catch (Exception e) {
                log.error("runTopicThreads getLock error", e);
            }
            try {
                if (lock == null) {
                    continue;
                }
                // 分布式锁时间比Blpop阻塞时间多1S,避免出现释放锁的时候,锁已经超时释放,unlock报错
                boolean lockFlag = lock.tryLock(LOCK_WAIT_TIME, LOCK_RELEASE_TIME, TimeUnit.SECONDS);
                if (!lockFlag) {
                    continue;
                }

                // 1. 获取ReadyQueue中待消费的数据
                RBlockingQueue<String> queue = redissonClient.getBlockingQueue(RD_LIST_TOPIC_PRE);
                String topicId = queue.poll(60, TimeUnit.SECONDS);
                if (StringUtils.isEmpty(topicId)) {
                    continue;
                }

                // 2. 获取job元信息内容
                RMap<String, Job> jobPoolMap = redissonClient.getMap(JOB_POOL_KEY);
                Job job = jobPoolMap.get(topicId);

                // 3. 消费
                FutureTask<Boolean> taskResult = TaskManager.doFutureTask(() -> consumerService.consumerMessage(job.getUrl(), job.getBody()), job.getTopic() + "-->消费JobId-->" + job.getJobId());
                if (taskResult.get()) {
                    // 3.1 消费成功,删除JobPool和DelayBucket的job信息
                    jobPoolMap.remove(topicId);
                } else {
                    int retrySum = job.getRetry() + 1;
                    // 3.2 消费失败,则根据策略重新加入Bucket

                    // 如果重试次数大于5,则将jobPool中的数据删除,持久化到DB
                    if (retrySum > RetryStrategyEnum.RETRY_FIVE.getRetry()) {
                        jobPoolMap.remove(topicId);
                        continue;
                    }
                    job.setRetry(retrySum);
                    long nextTime = job.getDelay() + RetryStrategyEnum.getDelayTime(job.getRetry()) * 1000;
                    log.info("next retryTime is [{}]", DateUtil.long2Str(nextTime));
                    RScoredSortedSet<Object> delayBucket = redissonClient.getScoredSortedSet(RedisQueueKey.RD_ZSET_BUCKET_PRE);
                    delayBucket.add(nextTime, topicId);
                    // 3.3 更新元信息失败次数
                    jobPoolMap.put(topicId, job);
                }
            } catch (Exception e) {
                log.error("runTopicThreads error", e);
            } finally {
                if (lock != null) {
                    try {
                        lock.unlock();
                    } catch (Exception e) {
                        log.error("runTopicThreads unlock error", e);
                    }
                }
            }
        }
    }
}

6.5 添加及删除Job

/**
 * 提供给外部服务的操作接口
 *
 * @author why
 * @date 2020年1月15日
 */
@Slf4j
@Service
public class RedisDelayQueueServiceImpl implements RedisDelayQueueService {

    @Autowired
    private RedissonClient redissonClient;


    /**
     * 添加job元信息
     *
     * @param job 元信息
     */
    @Override
    public void addJob(Job job) {

        RLock lock = redissonClient.getLock(ADD_JOB_LOCK + job.getJobId());
        try {
            boolean lockFlag = lock.tryLock(LOCK_WAIT_TIME, LOCK_RELEASE_TIME, TimeUnit.SECONDS);
            if (!lockFlag) {
                throw new BusinessException(ErrorMessageEnum.ACQUIRE_LOCK_FAIL);
            }
            String topicId = RedisQueueKey.getTopicId(job.getTopic(), job.getJobId());

            // 1. 将job添加到 JobPool中
            RMap<String, Job> jobPool = redissonClient.getMap(RedisQueueKey.JOB_POOL_KEY);
            if (jobPool.get(topicId) != null) {
                throw new BusinessException(ErrorMessageEnum.JOB_ALREADY_EXIST);
            }

            jobPool.put(topicId, job);

            // 2. 将job添加到 DelayBucket中
            RScoredSortedSet<Object> delayBucket = redissonClient.getScoredSortedSet(RedisQueueKey.RD_ZSET_BUCKET_PRE);
            delayBucket.add(job.getDelay(), topicId);
        } catch (InterruptedException e) {
            log.error("addJob error", e);
        } finally {
            if (lock != null) {
                lock.unlock();
            }
        }
    }


    /**
     * 删除job信息
     *
     * @param job 元信息
     */
    @Override
    public void deleteJob(JobDie jobDie) {

        RLock lock = redissonClient.getLock(DELETE_JOB_LOCK + jobDie.getJobId());
        try {
            boolean lockFlag = lock.tryLock(LOCK_WAIT_TIME, LOCK_RELEASE_TIME, TimeUnit.SECONDS);
            if (!lockFlag) {
                throw new BusinessException(ErrorMessageEnum.ACQUIRE_LOCK_FAIL);
            }
            String topicId = RedisQueueKey.getTopicId(jobDie.getTopic(), jobDie.getJobId());

            RMap<String, Job> jobPool = redissonClient.getMap(RedisQueueKey.JOB_POOL_KEY);
            jobPool.remove(topicId);

            RScoredSortedSet<Object> delayBucket = redissonClient.getScoredSortedSet(RedisQueueKey.RD_ZSET_BUCKET_PRE);
            delayBucket.remove(topicId);
        } catch (InterruptedException e) {
            log.error("addJob error", e);
        } finally {
            if (lock != null) {
                lock.unlock();
            }
        }
    }
}