class Solution {
public:
/**
* retrun the longest increasing subsequence
* @param arr int整型vector the array
* @return int整型vector
*/
vector<int> LIS(vector<int>& arr) {
// 两步:
// 1、求最长递增子序列长度
// 2、求最小字典序的递增子序列
if (arr.size() <= 1)
return arr;
vector<int> greedyArr; // 存放由贪婪算法得到的有序子序列,但不一定满足“字典序最小”
vector<int> maxLen; // 存放每个元素对应的最长有序子序列的长度
// 初始化
greedyArr.push_back(arr[0]);
maxLen.push_back(1);
// step1
for (int i = 1; i < arr.size(); i++) {
if (arr[i] > greedyArr.back()) { // 如果新元素大于当前贪婪序列的最大元素就加入
greedyArr.push_back(arr[i]);
maxLen.push_back(greedyArr.size());
}
else {
vector<int>::iterator iter = lower_bound(greedyArr.begin(), greedyArr.end(), arr[i]);
int idx = distance(greedyArr.begin(), iter);// 获得下标
greedyArr[idx] = arr[i]; // arr[i]插入到当前的有序子序列中,且arr[i]对应的最长有序子序列长度即为从greedyArr开头到lower_bound的部分
maxLen.push_back(idx+1); // 表示当前元素对应的最长有序子序列长度
}
}
/*for (int i = 0; i < greedyArr.size(); i++)
cout << greedyArr[i] << " ";
cout << endl;
for (int i = 0; i < maxLen.size(); i++)
cout << maxLen[i] << " ";*/
// step2
vector<int> res(greedyArr.size(), 0); // 字典序最小的最长有序子序列不一定是greedyArr,但他们长度相等
for (int i = arr.size() - 1, j = greedyArr.size(); i >= 0; i--) {
if (maxLen[i] == j){
res[--j] = arr[i];
}
}
return res;
}
};