def compressed_col_sparse_matrix(dense_matrix):
dense_matrix_T = [list(a) for a in zip(*dense_matrix)]
vocter = [item for sublist in dense_matrix_T for item in sublist]
vals = []
row_idx = []
col_ptr = [0]
p = 0
for i, K in enumerate(vocter):
if K != 0:
vals.append(K)
row_idx.append(i%len(dense_matrix[0]))
p += 1
if i >= len(dense_matrix_T[0]) and vocter[i-1] == 0:
col_ptr.append(p-1)
col_ptr.append(len(vals))
return vals, row_idx, col_ptr
if __name__ == "__main__":
dense_matrix = eval(input())
vals, row_idx, col_ptr = compressed_col_sparse_matrix(dense_matrix)
print(vals)
print(row_idx)
print(col_ptr)