我是按着电子科技大学张博博士的博客指出的阅读方式去阅读的,代码注释也是在它的代码注释的基础上,加上一些自己的注释。

1, Caffe中blob的实现

blob包含了3种数据:

(1)data 前向传播所用到的数据

(2)diff 反向传播所用到的数据

(3)shape 解释data和diff的shape数据

blob.hpp

#ifndef CAFFE_BLOB_HPP_
#define CAFFE_BLOB_HPP_

#include <algorithm>
#include <string>
#include <vector>

#include "caffe/common.hpp"
#include "caffe/proto/caffe.pb.h"
#include "caffe/syncedmem.hpp"

const int kMaxBlobAxes = 32;

namespace caffe {

	/**
	* @brief A wrapper around SyncedMemory holders serving as the basic
	*        computational unit through which Layer%s, Net%s, and Solver%s
	*        interact.
	*		 Blob是SyncedMemory的包裹器,SyncedMeory是负责内存分配空间以及在GPU上分配空间,并且负责同步数据。
	* TODO(dox): more thorough description.
	*/
	template <typename Dtype>
	class Blob {
	public:
	//构造函数
		Blob()
			: data_(), diff_(), count_(0), capacity_(0) {}

		/// @brief Deprecated; use <code>Blob(const vector<int>& shape)</code>.
		explicit Blob(const int num, const int channels, const int height,
			const int width);
		//这个函数和上面不同的地方在于维度可以更多维
		explicit Blob(const vector<int>& shape);

		/// @brief Deprecated; use <code>Reshape(const vector<int>& shape)</code>.
		void Reshape(const int num, const int channels, const int height,
			const int width);
		/**
		* @brief Change the dimensions of the blob, allocating new memory if
		*        necessary.
		*
		* This function can be called both to create an initial allocation
		* of memory, and to adjust the dimensions of a top blob during Layer::Reshape
		* or Layer::Forward. When changing the size of blob, memory will only be
		* reallocated if sufficient memory does not already exist, and excess memory
		* will never be freed.
		*
		* Note that reshaping an input blob and immediately calling Net::Backward is
		* an error; either Net::Forward or Net::Reshape need to be called to
		* propagate the new input shape to higher layers.
		*/
		void Reshape(const vector<int>& shape);//同理
		void Reshape(const BlobShape& shape);
		void ReshapeLike(const Blob& other);
		//输出数据的维度,以空格分割,最后输出一维维度,以string的方式返回
		inline string shape_string() const {
			ostringstream stream;
			for (int i = 0; i < shape_.size(); ++i) {
				stream << shape_[i] << " ";
			}
			stream << "(" << count_ << ")";
			return stream.str();
		}
		//返回表示维度的vector
		inline const vector<int>& shape() const { return shape_; }
		/**
		* @brief Returns the dimension of the index-th axis (or the negative index-th
		*        axis from the end, if index is negative).
		*
		* @param index the axis index, which may be negative as it will be
		*        "canonicalized" using CanonicalAxisIndex.
		*        Dies on out of range index.
		*/
		//这三个函数主要是在于参数的数据类型不同,第一个没什么好说的,第二个中的BlobShape是通过protobuf通过caffe.proto
		//生成的caffe.pb.h头文件中的一种数据类型,具体可以去看,这里为不详细说明,只当是一种数据类型。
		//第三个是使当前的blob的结构与参数other的结构相同。
		//计算index维的大小
		inline int shape(int index) const {
			return shape_[CanonicalAxisIndex(index)];
		}
		//获取维度的个数
		inline int num_axes() const { return shape_.size(); }
		//获取数据的所有维度的相乘,即数据的个数
		inline int count() const { return count_; }

		/**
		* @brief Compute the volume of a slice; i.e., the product of dimensions
		*        among a range of axes.
		*
		* @param start_axis The first axis to include in the slice.
		*
		* @param end_axis The first axis to exclude from the slice.
		*/
		//获取某几维数据的大小
		inline int count(int start_axis, int end_axis) const {
			//判断维度的索引是不是在范围内
			CHECK_LE(start_axis, end_axis);
			CHECK_GE(start_axis, 0);
			CHECK_GE(end_axis, 0);
			CHECK_LE(start_axis, num_axes());
			CHECK_LE(end_axis, num_axes());
			int count = 1;
			for (int i = start_axis; i < end_axis; ++i) {
				count *= shape(i);
			}
			return count;
		}
		/**
		* @brief Compute the volume of a slice spanning from a particular first
		*        axis to the final axis.
		*
		* @param start_axis The first axis to include in the slice.
		*/
		//获取某一维到结束数据的大小
		inline int count(int start_axis) const {
			return count(start_axis, num_axes());
		}

		/**
		* @brief Returns the 'canonical' version of a (usually) user-specified axis,
		*        allowing for negative indexing (e.g., -1 for the last axis).
		*
		* @param axis_index the axis index.
		*        If 0 <= index < num_axes(), return index.
		*        If -num_axes <= index <= -1, return (num_axes() - (-index)),
		*        e.g., the last axis index (num_axes() - 1) if index == -1,
		*        the second to last if index == -2, etc.
		*        Dies on out of range index.
		*/
		//标准化索引,主要是对参数索引进行标准化,以满足要求
		inline int CanonicalAxisIndex(int axis_index) const {
			CHECK_GE(axis_index, -num_axes())
				<< "axis " << axis_index << " out of range for " << num_axes()
				<< "-D Blob with shape " << shape_string();
			CHECK_LT(axis_index, num_axes())
				<< "axis " << axis_index << " out of range for " << num_axes()
				<< "-D Blob with shape " << shape_string();
			if (axis_index < 0) {
				return axis_index + num_axes();
			}
			return axis_index;
		}
		//inline int LegacyShape(int index) const;//data_维数不大于4时才能使用,功能同shape()类似
		/// @brief Deprecated legacy shape accessor num: use shape instead.
		inline int num() const { return LegacyShape(0); }
		/// @brief Deprecated legacy shape accessor channels: use shape instead.
		inline int channels() const { return LegacyShape(1); }
		/// @brief Deprecated legacy shape accessor height: use shape instead.
		inline int height() const { return LegacyShape(2); }
		/// @brief Deprecated legacy shape accessor width: use shape instead.
		inline int width() const { return LegacyShape(3); }
		inline int LegacyShape(int index) const {
			CHECK_LE(num_axes(), 4)
				<< "Cannot use legacy accessors on Blobs with > 4 axes.";
			CHECK_LT(index, 4);
			CHECK_GE(index, -4);
			if (index >= num_axes() || index < -num_axes()) {
				// Axis is out of range, but still in [0, 3] (or [-4, -1] for reverse
				// indexing) -- this special case simulates the one-padding used to fill
				// extraneous axes of legacy blobs.
				return 1;
			}
			return shape(index);
		}
		//获取某位置为第多少个。相当于编号
		inline int offset(const int n, const int c = 0, const int h = 0,
			const int w = 0) const {
			CHECK_GE(n, 0);
			CHECK_LE(n, num());
			CHECK_GE(channels(), 0);
			CHECK_LE(c, channels());
			CHECK_GE(height(), 0);
			CHECK_LE(h, height());
			CHECK_GE(width(), 0);
			CHECK_LE(w, width());
			return ((n * channels() + c) * height() + h) * width() + w;
		}
		//同上,只是参数不同
		inline int offset(const vector<int>& indices) const {
			CHECK_LE(indices.size(), num_axes());
			int offset = 0;
			for (int i = 0; i < num_axes(); ++i) {
				offset *= shape(i);
				if (indices.size() > i) {
					CHECK_GE(indices[i], 0);
					CHECK_LT(indices[i], shape(i));
					offset += indices[i];
				}
			}
			return offset;
		}
		/**
		* @brief Copy from a source Blob.
		*
		* @param source the Blob to copy from
		* @param copy_diff if false, copy the data; if true, copy the diff
		* @param reshape if false, require this Blob to be pre-shaped to the shape
		*        of other (and die otherwise); if true, Reshape this Blob to other's
		*        shape if necessary
		*/
		/*功能:由source Blob拷贝到本Blob。
			参数:source 源Blob
			copy_diff 如果是false,拷贝data_,如果是true,拷贝diff_
			reshape 如果是false,则需要源Blob与本Blob形状相同,如果是true,则不需要
		*/
		void CopyFrom(const Blob<Dtype>& source, bool copy_diff = false,
			bool reshape = false);
		//获取某位置的data_数据
		inline Dtype data_at(const int n, const int c, const int h,
			const int w) const {
			return cpu_data()[offset(n, c, h, w)];
		}
		//获取某位置的diff_数据
		inline Dtype diff_at(const int n, const int c, const int h,
			const int w) const {
			return cpu_diff()[offset(n, c, h, w)];
		}
		//获取某位置上的data_数据
		inline Dtype data_at(const vector<int>& index) const {
			return cpu_data()[offset(index)];
		}
		//获取某位置上diff_数据
		inline Dtype diff_at(const vector<int>& index) const {
			return cpu_diff()[offset(index)];
		}
		//获取data_
		inline const shared_ptr<SyncedMemory>& data() const {
			CHECK(data_);
			return data_;
		}
		//获取diff_
		inline const shared_ptr<SyncedMemory>& diff() const {
			CHECK(diff_);
			return diff_;
		}
		//获取data_ cpu指针
		const Dtype* cpu_data() const;
		//设置data_的cpu指针,只是修改了指针
		void set_cpu_data(Dtype* data);
		//获取shape_data_的gpu指针
		const int* gpu_shape() const;
		//获取data_的gpu指针
		const Dtype* gpu_data() const;
		//获取diff_的cpu指针
		const Dtype* cpu_diff() const;
		//获取diff_的gpu指针
		const Dtype* gpu_diff() const;
		//见SyncedMemory的mutable_cpu_data();
		Dtype* mutable_cpu_data();
		//见SyncedMemory的mutable_gpu_data();
		Dtype* mutable_gpu_data();
		//见SyncedMemory的mutable_cpu_data();
		Dtype* mutable_cpu_diff();
		//见SyncedMemory的mutable_gpu_data();
		Dtype* mutable_gpu_diff();
		/*
		其中用到math_functions.hpp中的函数caffe_axpy(),该函数封装了cblas_saxpy,实现的是Y=alpha*X+Y。由此,知该函数的功能是data_=(data_-diff_)。
		另外,该函数只实现了对double和float型数据,对于unsigned int和int由于该函数主要是在Net中被调用,只有Blob<float>和Blob<double>型式,
		因此没有定义unsigned int和int。
		*/
		void Update();
		//由BlobProto对Blob进行赋值操作。reshape代表是否允许修改shape_的大小。需要注意的是再这里有double和float两种类型的数据 ,在代码中可以看到具体的体现
		void FromProto(const BlobProto& proto, bool reshape = true);
		////针对double和float有两个实现的函数,这里只举例说明其中的一个。将Blob中的数据存入BlobProto中,write_diff表示是否存diff_。
		void ToProto(BlobProto* proto, bool write_diff = false) const;
		/*计算第一范数
			其中用到了math_function.hpp中的函数caffe_cpu_asum()和caffe_gpu_asum,实现的功能是对向量X求其每个元素绝对值的和,不同的是X分别在cpu和gpu中。
		*/
		/// @brief Compute the sum of absolute values (L1 norm) of the data.
		Dtype asum_data() const;
		/// @brief Compute the sum of absolute values (L1 norm) of the diff.
		//同上,不过针对的diff
		Dtype asum_diff() const;
		/// @brief Compute the sum of squares (L2 norm squared) of the data.
		/*
			计算L2范数。
			用到了math_function.hpp中的caffe_cpu_dot(),caffe_cpu_strided_dot(),caffe_gpu_dot(), caffe_gpu_strided_dot()。具体就是就向量X的平方和。
		*/
		Dtype sumsq_data() const;
		/// @brief Compute the sum of squares (L2 norm squared) of the diff.
		//同上,不过针对的是diff
		Dtype sumsq_diff() const;

		/// @brief Scale the blob data by a constant factor.
		/*
			功能:正规化data_。
			说明:用到math_function.hpp中的caffe_scal()和caffe_gpu_scal()函数,我的理解就是对向量X乘上一个因子。
		*/
		void scale_data(Dtype scale_factor);
		/// @brief Scale the blob diff by a constant factor.
		//同上,不过是针对diff
		void scale_diff(Dtype scale_factor);

		/**
		* @brief Set the data_ shared_ptr to point to the SyncedMemory holding the
		*        data_ of Blob other -- useful in Layer%s which simply perform a copy
		*        in their Forward pass.
		*
		* This deallocates the SyncedMemory holding this Blob's data_, as
		* shared_ptr calls its destructor when reset with the "=" operator.
		*/
		////本Blob共享other的data_
		void ShareData(const Blob& other);
		/**
		* @brief Set the diff_ shared_ptr to point to the SyncedMemory holding the
		*        diff_ of Blob other -- useful in Layer%s which simply perform a copy
		*        in their Forward pass.
		*
		* This deallocates the SyncedMemory holding this Blob's diff_, as
		* shared_ptr calls its destructor when reset with the "=" operator.
		*/
		//本Blob共享other的diff_
		void ShareDiff(const Blob& other);
		//判断other与本Blob形状是否相同。
		bool ShapeEquals(const BlobProto& other);

	protected:
		//前向传播的数据
		shared_ptr<SyncedMemory> data_;
		//反向出传播的数据
		shared_ptr<SyncedMemory> diff_;
		//旧的形状数据
		shared_ptr<SyncedMemory> shape_data_;
		//新的形状数据
		vector<int> shape_;
		//数据的个数
		int count_;
		//容量
		int capacity_;

		DISABLE_COPY_AND_ASSIGN(Blob);
	};  // class Blob

}  // namespace caffe

#endif  // CAFFE_BLOB_HPP_

blob.cpp

#include <climits>
#include <vector>

#include "caffe/blob.hpp"
#include "caffe/common.hpp"
#include "caffe/syncedmem.hpp"
#include "caffe/util/math_functions.hpp"

namespace caffe {
//reshape的具体实现
//过时的方法最终是调用新的方法
template <typename Dtype>
void Blob<Dtype>::Reshape(const int num, const int channels, const int height,
    const int width) {
  vector<int> shape(4);
  shape[0] = num;
  shape[1] = channels;
  shape[2] = height;
  shape[3] = width;
  Reshape(shape);
}
//reshape的具体实现
template <typename Dtype>
void Blob<Dtype>::Reshape(const vector<int>& shape) {
  CHECK_LE(shape.size(), kMaxBlobAxes);//判断是否小于规定的最大的BLOB的维度(35维)
  count_ = 1;
  shape_.resize(shape.size());//首先把大小设置为vector<int>shape_;即是新的形状数据的大小
  if (!shape_data_ || shape_data_->size() < shape.size() * sizeof(int)) {
    shape_data_.reset(new SyncedMemory(shape.size() * sizeof(int)));
  }
  int* shape_data = static_cast<int*>(shape_data_->mutable_cpu_data());//static_cast运算符把expression转换为type - id类型,但没有运行时类型检查来保证转换的安全性。
  for (int i = 0; i < shape.size(); ++i) {
	//检查形状数据是否合法
    CHECK_GE(shape[i], 0);
    if (count_ != 0) {
      CHECK_LE(shape[i], INT_MAX / count_) << "blob size exceeds INT_MAX";
    }
	//计算数据个数
    count_ *= shape[i];
	//复制shape到新的和旧的形状数据
    shape_[i] = shape[i];
    shape_data[i] = shape[i];
  }
  //判断是否大于存储的容量
  if (count_ > capacity_) {
    capacity_ = count_;
	//重新分配内存
    data_.reset(new SyncedMemory(capacity_ * sizeof(Dtype)));
    diff_.reset(new SyncedMemory(capacity_ * sizeof(Dtype)));
  }
}
// 所谓的reshape实际上就仅仅是复制了shape的数据而已  
// 在调用的时候自动乘以shape的数据就可以得到数据,有点tricky  
template <typename Dtype>
void Blob<Dtype>::Reshape(const BlobShape& shape) {
  CHECK_LE(shape.dim_size(), kMaxBlobAxes);//维度是否小于35
  vector<int> shape_vec(shape.dim_size());//复制形状数据
  for (int i = 0; i < shape.dim_size(); ++i) {
    shape_vec[i] = shape.dim(i);
  }
  //调用新的reshape函数
  Reshape(shape_vec);
}

template <typename Dtype>
void Blob<Dtype>::ReshapeLike(const Blob<Dtype>& other) {
  Reshape(other.shape());
}

template <typename Dtype>
Blob<Dtype>::Blob(const int num, const int channels, const int height,
    const int width)
  // capacity_ must be initialized before calling Reshape
  //技巧,先初始化容量为0,然后用reshape来分配内存了  
  : capacity_(0) {
  Reshape(num, channels, height, width);
}
//同上
template <typename Dtype>
Blob<Dtype>::Blob(const vector<int>& shape)
  // capacity_ must be initialized before calling Reshape
  : capacity_(0) {
  Reshape(shape);
}

template <typename Dtype>
const int* Blob<Dtype>::gpu_shape() const {
  CHECK(shape_data_);
  //shared_ptr<SyncedMemory> shape_data_;  
  //因此也分gpu_data和cpu_data
  return (const int*)shape_data_->gpu_data();
}

template <typename Dtype>
const Dtype* Blob<Dtype>::cpu_data() const {
  CHECK(data_);
  return (const Dtype*)data_->cpu_data();
}

template <typename Dtype>
void Blob<Dtype>::set_cpu_data(Dtype* data) {
  CHECK(data);
  data_->set_cpu_data(data);
}

template <typename Dtype>
const Dtype* Blob<Dtype>::gpu_data() const {
  CHECK(data_);
  return (const Dtype*)data_->gpu_data();
}

template <typename Dtype>
const Dtype* Blob<Dtype>::cpu_diff() const {
  CHECK(diff_);
  return (const Dtype*)diff_->cpu_data();
}

template <typename Dtype>
const Dtype* Blob<Dtype>::gpu_diff() const {
  CHECK(diff_);
  return (const Dtype*)diff_->gpu_data();
}

template <typename Dtype>
Dtype* Blob<Dtype>::mutable_cpu_data() {
  CHECK(data_);
  return static_cast<Dtype*>(data_->mutable_cpu_data());
}

template <typename Dtype>
Dtype* Blob<Dtype>::mutable_gpu_data() {
  CHECK(data_);
  return static_cast<Dtype*>(data_->mutable_gpu_data());
}

template <typename Dtype>
Dtype* Blob<Dtype>::mutable_cpu_diff() {
  CHECK(diff_);
  return static_cast<Dtype*>(diff_->mutable_cpu_data());
}

template <typename Dtype>
Dtype* Blob<Dtype>::mutable_gpu_diff() {
  CHECK(diff_);
  return static_cast<Dtype*>(diff_->mutable_gpu_data());
}
// 将其他blob的数据复制到当前的blob中去  
template <typename Dtype>
void Blob<Dtype>::ShareData(const Blob& other) {
  CHECK_EQ(count_, other.count());
  data_ = other.data();
}
// 将其他blob的diff数据复制到当前的blob中去  
template <typename Dtype>
void Blob<Dtype>::ShareDiff(const Blob& other) {
  CHECK_EQ(count_, other.count());
  diff_ = other.diff();
}

// The "update" method is used for parameter blobs in a Net, which are stored
// as Blob<float> or Blob<double> -- hence we do not define it for
// Blob<int> or Blob<unsigned int>.
template <> void Blob<unsigned int>::Update() { NOT_IMPLEMENTED; }
template <> void Blob<int>::Update() { NOT_IMPLEMENTED; }
// Update是计算data=-1*diff+data  
template <typename Dtype>
void Blob<Dtype>::Update() {
  // We will perform update based on where the data is located.
  switch (data_->head()) {
  case SyncedMemory::HEAD_AT_CPU:
    // perform computation on CPU
	  // axpby即alpha * x plus beta *y 这个含义,blas的函数命名真是见名知意  
	  // template <> void caffe_axpy<float>(const int N, const float alpha, const float* X, float* Y) { cblas_saxpy(N, alpha, X, 1, Y, 1); }  
	  // caffe_axpy计算的是Y=alpha * X + Y ,其中alpha=-1了这里  
	  // 存储的时候用到了mutable_cpu_data,防止其他线程访问  
    caffe_axpy<Dtype>(count_, Dtype(-1),
        static_cast<const Dtype*>(diff_->cpu_data()),
        static_cast<Dtype*>(data_->mutable_cpu_data()));
    break;
  case SyncedMemory::HEAD_AT_GPU:
  case SyncedMemory::SYNCED:
#ifndef CPU_ONLY
    // perform computation on GPU
	  // Y=alpha * X + Y ,其中alpha=-1了这里  
    caffe_gpu_axpy<Dtype>(count_, Dtype(-1),
        static_cast<const Dtype*>(diff_->gpu_data()),
        static_cast<Dtype*>(data_->mutable_gpu_data()));
#else
    NO_GPU;
#endif
    break;
  default:
    LOG(FATAL) << "Syncedmem not initialized.";
  }
}

template <> unsigned int Blob<unsigned int>::asum_data() const {
  NOT_IMPLEMENTED;
  return 0;
}

template <> int Blob<int>::asum_data() const {
  NOT_IMPLEMENTED;
  return 0;
}
// 计算data的L1范数  
template <typename Dtype>
Dtype Blob<Dtype>::asum_data() const {
  if (!data_) { return 0; }
  switch (data_->head()) {
  case SyncedMemory::HEAD_AT_CPU:
    return caffe_cpu_asum(count_, cpu_data());
  case SyncedMemory::HEAD_AT_GPU:
  case SyncedMemory::SYNCED:
#ifndef CPU_ONLY
  {
    Dtype asum;
    caffe_gpu_asum(count_, gpu_data(), &asum);
    return asum;
  }
#else
    NO_GPU;
#endif
  case SyncedMemory::UNINITIALIZED:
    return 0;
  default:
    LOG(FATAL) << "Unknown SyncedMemory head state: " << data_->head();
  }
  return 0;
}

template <> unsigned int Blob<unsigned int>::asum_diff() const {
  NOT_IMPLEMENTED;
  return 0;
}
// 计算diff1的L1范数  
template <> int Blob<int>::asum_diff() const {
  NOT_IMPLEMENTED;
  return 0;
}

template <typename Dtype>
Dtype Blob<Dtype>::asum_diff() const {
  if (!diff_) { return 0; }
  switch (diff_->head()) {
  case SyncedMemory::HEAD_AT_CPU:
    return caffe_cpu_asum(count_, cpu_diff());
  case SyncedMemory::HEAD_AT_GPU:
  case SyncedMemory::SYNCED:
#ifndef CPU_ONLY
  {
    Dtype asum;
    caffe_gpu_asum(count_, gpu_diff(), &asum);
    return asum;
  }
#else
    NO_GPU;
#endif
  case SyncedMemory::UNINITIALIZED:
    return 0;
  default:
    LOG(FATAL) << "Unknown SyncedMemory head state: " << diff_->head();
  }
  return 0;
}

template <> unsigned int Blob<unsigned int>::sumsq_data() const {
  NOT_IMPLEMENTED;
  return 0;
}

template <> int Blob<int>::sumsq_data() const {
  NOT_IMPLEMENTED;
  return 0;
}
// 计算sum of square of data(L2范数)  
template <typename Dtype>
Dtype Blob<Dtype>::sumsq_data() const {
  Dtype sumsq;
  const Dtype* data;
  if (!data_) { return 0; }
  switch (data_->head()) {
  case SyncedMemory::HEAD_AT_CPU:
    data = cpu_data();
    sumsq = caffe_cpu_dot(count_, data, data);
    break;
  case SyncedMemory::HEAD_AT_GPU:
  case SyncedMemory::SYNCED:
#ifndef CPU_ONLY
    data = gpu_data();
    caffe_gpu_dot(count_, data, data, &sumsq);
#else
    NO_GPU;
#endif
    break;
  case SyncedMemory::UNINITIALIZED:
    return 0;
  default:
    LOG(FATAL) << "Unknown SyncedMemory head state: " << data_->head();
  }
  return sumsq;
}

template <> unsigned int Blob<unsigned int>::sumsq_diff() const {
  NOT_IMPLEMENTED;
  return 0;
}

template <> int Blob<int>::sumsq_diff() const {
  NOT_IMPLEMENTED;
  return 0;
}
// sum of square of diff  (L2范数)
template <typename Dtype>
Dtype Blob<Dtype>::sumsq_diff() const {
  Dtype sumsq;
  const Dtype* diff;
  if (!diff_) { return 0; }
  switch (diff_->head()) {
  case SyncedMemory::HEAD_AT_CPU:
    diff = cpu_diff();
    sumsq = caffe_cpu_dot(count_, diff, diff);
    break;
  case SyncedMemory::HEAD_AT_GPU:
  case SyncedMemory::SYNCED:
#ifndef CPU_ONLY
    diff = gpu_diff();
    caffe_gpu_dot(count_, diff, diff, &sumsq);
    break;
#else
    NO_GPU;
#endif
  case SyncedMemory::UNINITIALIZED:
    return 0;
  default:
    LOG(FATAL) << "Unknown SyncedMemory head state: " << data_->head();
  }
  return sumsq;
}

template <> void Blob<unsigned int>::scale_data(unsigned int scale_factor) {
  NOT_IMPLEMENTED;
}

template <> void Blob<int>::scale_data(int scale_factor) {
  NOT_IMPLEMENTED;
}
// 将data部分乘以一个因子scale_factor  
template <typename Dtype>
void Blob<Dtype>::scale_data(Dtype scale_factor) {
  Dtype* data;
  if (!data_) { return; }
  switch (data_->head()) {
  case SyncedMemory::HEAD_AT_CPU:
    data = mutable_cpu_data();
    caffe_scal(count_, scale_factor, data);
    return;
  case SyncedMemory::HEAD_AT_GPU:
  case SyncedMemory::SYNCED:
#ifndef CPU_ONLY
    data = mutable_gpu_data();
    caffe_gpu_scal(count_, scale_factor, data);
    return;
#else
    NO_GPU;
#endif
  case SyncedMemory::UNINITIALIZED:
    return;
  default:
    LOG(FATAL) << "Unknown SyncedMemory head state: " << data_->head();
  }
}

template <> void Blob<unsigned int>::scale_diff(unsigned int scale_factor) {
  NOT_IMPLEMENTED;
}

template <> void Blob<int>::scale_diff(int scale_factor) {
  NOT_IMPLEMENTED;
}
// 将diff部分乘以一个因子scale_factor  
template <typename Dtype>
void Blob<Dtype>::scale_diff(Dtype scale_factor) {
  Dtype* diff;
  if (!diff_) { return; }
  switch (diff_->head()) {
  case SyncedMemory::HEAD_AT_CPU:
    diff = mutable_cpu_diff();
    caffe_scal(count_, scale_factor, diff);
    return;
  case SyncedMemory::HEAD_AT_GPU:
  case SyncedMemory::SYNCED:
#ifndef CPU_ONLY
    diff = mutable_gpu_diff();
    caffe_gpu_scal(count_, scale_factor, diff);
    return;
#else
    NO_GPU;
#endif
  case SyncedMemory::UNINITIALIZED:
    return;
  default:
    LOG(FATAL) << "Unknown SyncedMemory head state: " << diff_->head();
  }
}
// 两个blob是否shape一样  
template <typename Dtype>
bool Blob<Dtype>::ShapeEquals(const BlobProto& other) {
	// 判断是否是旧的blob  
  if (other.has_num() || other.has_channels() ||
      other.has_height() || other.has_width()) {
    // Using deprecated 4D Blob dimensions --
    // shape is (num, channels, height, width).
    // Note: we do not use the normal Blob::num(), Blob::channels(), etc.
    // methods as these index from the beginning of the blob shape, where legacy
    // parameter blobs were indexed from the end of the blob shape (e.g., bias
    // Blob shape (1 x 1 x 1 x N), IP layer weight Blob shape (1 x 1 x M x N)).
    return shape_.size() <= 4 &&
           LegacyShape(-4) == other.num() &&
           LegacyShape(-3) == other.channels() &&
           LegacyShape(-2) == other.height() &&
           LegacyShape(-1) == other.width();
  }
  // 如果不是旧的blob则直接判断  
  vector<int> other_shape(other.shape().dim_size());
  for (int i = 0; i < other.shape().dim_size(); ++i) {
    other_shape[i] = other.shape().dim(i);
  }
  return shape_ == other_shape;
}
// 从别的blob进行复制  
template <typename Dtype>
void Blob<Dtype>::CopyFrom(const Blob& source, bool copy_diff, bool reshape) {
  if (source.count() != count_ || source.shape() != shape_) {
    if (reshape) {
		ReshapeLike(source); // 复制shape数据
    } else {
      LOG(FATAL) << "Trying to copy blobs of different sizes.";
    }
  }
  switch (Caffe::mode()) {
  case Caffe::GPU:
	 // GPU复制diff  
    if (copy_diff) {
      caffe_copy(count_, source.gpu_diff(),
          static_cast<Dtype*>(diff_->mutable_gpu_data()));
    } else {
      caffe_copy(count_, source.gpu_data(),
          static_cast<Dtype*>(data_->mutable_gpu_data()));
    }
    break;
  case Caffe::CPU: // CPU复制diff  
    if (copy_diff) {
      caffe_copy(count_, source.cpu_diff(),
          static_cast<Dtype*>(diff_->mutable_cpu_data()));
    } else {
      caffe_copy(count_, source.cpu_data(),
          static_cast<Dtype*>(data_->mutable_cpu_data()));
    }
    break;
  default:
    LOG(FATAL) << "Unknown caffe mode.";
  }
}

template <typename Dtype>
void Blob<Dtype>::FromProto(const BlobProto& proto, bool reshape) {
  if (reshape) {
    vector<int> shape;
    if (proto.has_num() || proto.has_channels() ||
        proto.has_height() || proto.has_width()) {
      // Using deprecated 4D Blob dimensions --
      // shape is (num, channels, height, width).
	// 如果是旧的blob直接转换为新的blob中的shape数据  
      shape.resize(4);
      shape[0] = proto.num();
      shape[1] = proto.channels();
      shape[2] = proto.height();
      shape[3] = proto.width();
    } else {
      shape.resize(proto.shape().dim_size());
      for (int i = 0; i < proto.shape().dim_size(); ++i) {
        shape[i] = proto.shape().dim(i);
      }
    }
    Reshape(shape);// 复制shape数据到当前blob  
  } else {
    CHECK(ShapeEquals(proto)) << "shape mismatch (reshape not set)";
  }
  // copy data
  Dtype* data_vec = mutable_cpu_data();// 获取当前的blob在内存上的数据指针,该指针是互斥的  
  if (proto.double_data_size() > 0) {
    CHECK_EQ(count_, proto.double_data_size());
    for (int i = 0; i < count_; ++i) {
      data_vec[i] = proto.double_data(i);
    }
  } else {
    CHECK_EQ(count_, proto.data_size());
    for (int i = 0; i < count_; ++i) {
      data_vec[i] = proto.data(i);
    }
  }
  //copy diff
  if (proto.double_diff_size() > 0) {
    CHECK_EQ(count_, proto.double_diff_size());
    Dtype* diff_vec = mutable_cpu_diff();// 获取当前的diff在内存上的数据指针,该指针是互斥的  
    for (int i = 0; i < count_; ++i) {
      diff_vec[i] = proto.double_diff(i);
    }
  } else if (proto.diff_size() > 0) {
    CHECK_EQ(count_, proto.diff_size());
    Dtype* diff_vec = mutable_cpu_diff();
    for (int i = 0; i < count_; ++i) {
      diff_vec[i] = proto.diff(i);
    }
  }
}
// BlobProto和BlobShape是protobuf定义的,其中一些函数是自动生成的  
// mutable_shape、add_dim、clear_double_data、clear_double_diff、add_double_data  
// add_double_diff等  
// 见src/caffe/proto/caffe.proto  
template <>
void Blob<double>::ToProto(BlobProto* proto, bool write_diff) const {
  proto->clear_shape();
  for (int i = 0; i < shape_.size(); ++i) {
    proto->mutable_shape()->add_dim(shape_[i]);
  }
  proto->clear_double_data();
  proto->clear_double_diff();
  const double* data_vec = cpu_data();
  for (int i = 0; i < count_; ++i) {
    proto->add_double_data(data_vec[i]);
  }
  if (write_diff) {
    const double* diff_vec = cpu_diff();
    for (int i = 0; i < count_; ++i) {
      proto->add_double_diff(diff_vec[i]);
    }
  }
}

template <>
void Blob<float>::ToProto(BlobProto* proto, bool write_diff) const {
  proto->clear_shape();
  for (int i = 0; i < shape_.size(); ++i) {
    proto->mutable_shape()->add_dim(shape_[i]);
  }
  proto->clear_data();
  proto->clear_diff();
  const float* data_vec = cpu_data();
  for (int i = 0; i < count_; ++i) {
    proto->add_data(data_vec[i]);
  }
  if (write_diff) {
    const float* diff_vec = cpu_diff();
    for (int i = 0; i < count_; ++i) {
      proto->add_diff(diff_vec[i]);
    }
  }
}

INSTANTIATE_CLASS(Blob);
template class Blob<int>;
template class Blob<unsigned int>;

}  // namespace caffe