Problem
Given a complete binary tree, count the number of nodes.
Note:
Definition of a complete binary tree from Wikipedia:
In a complete binary tree every level, except possibly the last, is completely filled, and all nodes in the last level are as far left as possible. It can have between 1 and 2^h nodes inclusive at the last level h.
Example:
Input: 1 / \ 2 3 / \ / 4 5 6 Output: 6
问题
给出一个完全二叉树,求出该树的节点个数。
说明:
完全二叉树的定义如下:在完全二叉树中,除了最底层节点可能没填满外,其余每层节点数都达到最大值,并且最下面一层的节点都集中在该层最左边的若干位置。若最底层为第 h 层,则该层包含 1~ 2^h 个节点。
示例:
输入: 1 / \ 2 3 / \ / 4 5 6 输出: 6
思路
中序遍历
普通二叉树:遍历一遍左右子树 满二叉树:节点总数与高度呈指数关系 完全二叉树:结合普通二叉树与满二叉树
时间复杂度
时间复杂度是 O(logN*logN)
因为一棵完全二叉树中,必存在一棵子树是满二叉树。因此,肯定会触发 heightleft == heightright 条件,所以递归深度就是树的高度,时间复杂度是 O(logN)。每次递归就是 while 循环,时间复杂度也是 O(logN),总体时间复杂度就是 O(logN*logN)。
Python3 代码
# Definition for a binary tree node. # class TreeNode: # def __init__(self, x): # self.val = x # self.left = None # self.right = None class Solution: def countNodes(self, root: TreeNode) -> int: l = TreeNode(None) l = root r = TreeNode(None) r = root heightleft, heightright = 0, 0 # 记录左右子树的高度 while l != None: l = l.left heightleft += 1 while r != None: r = r.right heightright += 1 # 如果左右子树高度相同,则是一棵满二叉树 if heightleft == heightright: return 2**heightleft - 1 # 如果左右子树高度不相同,则是按普通二叉树计算 return 1 + self.countNodes(root.left) + self.countNodes(root.right)