bfs/dfs/dijkstra +优先队列
起初看到这个题目我就想着一定是一个bfs的题,后面看大佬们的题解,发现大家都是用的dijkstra算法去做,因为求的是最短路嘛,但是因为这个题目的特殊性,dfs,bfs也可以用来求解最短路径,所以我就想每种方法都用一次
解法一:BFS+优先队列
#include <bits/stdc++.h> using namespace std; const int maxn = 100; char c[maxn][maxn]; int sx, sy, ex, ey, n, m; int d[4][2] = {1, 0, -1, 0, 0, 1, 0, -1}; int vis[maxn][maxn], b[maxn][maxn]; struct node { int x, y, d; node(int xx, int yy, int dd) : x(xx), y(yy), d(dd) {} bool operator<(const node xx) const { return d > xx.d; } }; int bfs(int x, int y) { priority_queue<node> q; q.push(node(x, y, 0)); //首先把起点放入队列 vis[x][y] = 1; while (!q.empty()) { node xx = q.top(); q.pop(); if (xx.x == ex && xx.y == ey) //如果遇到了终点那么就返回当前距离 return xx.d; for (int i = 0; i < 4; ++i) //依次遍历该点的上下左右节点 { int nx = xx.x + d[i][0]; int ny = xx.y + d[i][1]; if (nx >= 1 && nx <= n && ny >= 1 && ny <= m && !vis[nx][ny]) //判断边界 { int h = xx.d + b[nx][ny]; //当前距离加上下一个的距离 vis[nx][ny] = 1; q.push(node(nx, ny, h)); } } } } int main() { while (~scanf("%d%d", &n, &m)) { for (int i = 1; i <= n; ++i) for (int j = 1; j <= m; ++j) { scanf(" %c", &c[i][j]); //这是一个小技巧,防止换行符和空格符号的干扰 if (c[i][j] == 'S') sx = i, sy = j; else if (c[i][j] == 'E') ex = i, ey = j; else if (c[i][j] == 'A' || c[i][j] == 'B' || c[i][j] == 'C') b[i][j] = 100; else b[i][j] = c[i][j] - '0'; } printf("%d\n", bfs(sx, sy)); } }
解法二:dfs
其实dfs的代码思路和bfs差不多,一个用队列一个用递归
#include <bits/stdc++.h> using namespace std; int a[100][100], vis[100][100]; int sx, sy, ex, ey, n, m; int inf = 0x3f3f3f3f; int d[4][2] = {-1, 0, 1, 0, 0, -1, 0, 1}; int xx[4] = {-1, 1, 0, 0}, yy[4] = {0, 0, -1, 1}; char c; void dfs(int x, int y, int sum) { if (x == ex && y == ey) { inf = min(sum, inf); return; } if (sum >= inf) return; for (int i = 0; i < 4; ++i) { int nx = x + d[i][0]; int ny = y + d[i][1]; if (nx >= 1 && nx <= n && ny >= 1 && ny <= m && !vis[nx][ny]) { vis[nx][ny] = 1; dfs(nx, ny, sum + a[nx][ny]); vis[nx][ny] = 0; } } } int main() { scanf("%d%d", &n, &m); for (int i = 1; i <= n; ++i) for (int j = 1; j <= m; ++j) { cin >> c;//c++输入语言默认是不输入空格和回车的 if (c == 'S') sx = i, sy = j; else if (c == 'E') ex = i, ey = j; else if (c == 'A' || c == 'B' || c == 'C') a[i][j] = 100; else a[i][j] = c - '0'; } dfs(sx, sy, 0); printf("%d\n", inf); }
解法三:Dijkstra+堆优化
二维数组转一维然后跑一次dijkstra
#include <bits/stdc++.h> #define inf 0x3f3f3f3f using namespace std; const int maxn = 1e3 + 7; int n, m; int map1[100][100]; int dir[4][2] = {{-1, 0}, {1, 0}, {0, -1}, {0, 1}}; struct node { int e, w, dis; bool operator<(const node &a) const { return w > a.w; } }; vector<node> w[maxn]; priority_queue<node> q; int dis[maxn], vis[maxn]; void Dijkstra(int s) { memset(dis, inf, sizeof(dis)); memset(vis, 0, sizeof(vis)); node t1, t2; t1.e = s; t1.w = 0; dis[s] = 0; q.push(t1); while (!q.empty()) { t1 = q.top(); q.pop(); if (vis[t1.e]) continue; vis[t1.e] = 1; for (int i = 0; i < w[t1.e].size(); i++) { int v = w[t1.e][i].e; if (!vis[v] && dis[t1.e] + w[t1.e][i].w < dis[v]) { dis[v] = dis[t1.e] + w[t1.e][i].w; t2.e = v; t2.w = dis[v]; q.push(t2); } } } } int main() { while (~scanf("%d%d", &n, &m)) { int s, e; char c; int end = (n - 1) * m + m - 1; for (int i = 0; i <= end; i++) { dis[i] = inf; vis[i] = 0; w[i].clear(); } for (int i = 0; i < n; i++) for (int j = 0; j < m; j++) { cin >> c; if (c == 'A' || c == 'B' || c == 'C') map1[i][j] = 100; else if (c == 'S') { map1[i][j] = 0; s = i * m + j; } else if (c == 'E') { map1[i][j] = 0; e = i * m + j; } else map1[i][j] = c - '0'; } node t; for (int i = 0; i < n; i++) for (int j = 0; j < m; j++) for (int k = 0; k < 4; k++) { int x = i + dir[k][0]; int y = j + dir[k][1]; if (x < 0 || x >= n || y < 0 || y >= m) continue; t.e = x * m + y; t.w = map1[x][y]; w[i * m + j].push_back(t); } Dijkstra(s); printf("%d\n", dis[e]); } return 0; }