1.Debug模式

1.1 什么是Debug模式

是供程序员使用的程序调试工具,它可以用于查看程序的执行流程,也可以用于追踪程序执行过程来调试程序。

1.2 Debug介绍与操作流程

  • 如何加断点

    • 选择要设置断点的代码行,在行号的区域后面单击鼠标左键即可
  • 如何运行加了断点的程序

    • 在代码区域右键Debug执行
  • 看哪里

    • 看Debugger窗口

    • 看Console窗口

  • 点哪里

    • 点Step Into (F7)这个箭头,也可以直接按F7
  • 如何删除断点

    • 选择要删除的断点,单击鼠标左键即可

    • 如果是多个断点,可以每一个再点击一次。也可以一次性全部删除

2. 进制的介绍与书写格式

2.1 进制的介绍与书写格式

代码 :

public class Demo1 {
   
    /* 十进制:Java中,数值默认都是10进制,不需要加任何修饰。 二进制:数值前面以0b开头,b大小写都可以。 八进制:数值前面以0开头。 十六进制:数值前面以0x开头,x大小写都可以。 注意: 书写的时候, 虽然加入了进制的标识, 但打印在控制台展示的都是十进制数据. */
    public static void main(String[] args) {
   
        System.out.println(10);
        System.out.println("二进制数据0b10的十进制表示为:" + 0b10);
        System.out.println("八进制数据010的十进制表示为:" + 010);
        System.out.println("十六进制数据0x10的十进制表示为:" + 0x10);
    }
}

2.2 任意进制到十进制的转换


2.3 进制转换-十进制到任意进制转换

2.3.1 : 十进制到二进制的转换

​ 公式:除基取余使用源数据,不断的除以基数(几进制,基数就是几)得到余数,直到商为0,再将余数倒着拼起来即可。

​ 需求:将十进制数字11,转换为2进制。

​ 实现方式:源数据为11,使用11不断的除以基数,也就是2,直到商为0。

2.3.2 : 十进制到十六进制的转换

​ 公式:除基取余使用源数据,不断的除以基数(几进制,基数就是几)得到余数,直到商为0,再将余数倒着拼起来即可。

​ 需求:将十进制数字60,转换为16进制。

​ 实现方式:源数据为60,使用60不断的除以基数,也就是16,直到商为0。

​ 结论:十进制到任意进制的转换

​ 公式:除基取余使用源数据,不断的除以基数(几进制,基数就是几)得到余数,直到商为0,再将余数倒着 拼起来即可

2.4 快速进制转换法

​ 8421码:

​ 8421码又称BCD码,是BCD代码中最常用的一种BCD: (Binary-Coded Decimal) 二进制码十进制数在这种编码方式中,每一位二进制值的1都是代表一个固定数值,把每一位的1代表的十进制数加起来得到的结果就是它所代表的十进制数。

2.5 原码反码补码

前言 : 计算机中的数据,都是以二进制补码的形式在运算,而补码则是通过反码和原码推算出来的

**原码 **:(可直观看出数据大小)

就是二进制定点表示法,即最高位为符号位,【0】表示正,【1】表示负,其余位表示数值的大小。

通过一个字节表示+7和-7,代码:byte b1 = 7; byte b2 = -7;一个字节等于8个比特位,也就是8个二进制位

0(符号位) 0000111

1(符号位) 0000111

反码 : 正数的反码与其原码相同;负数的反码是对其原码逐位取反,但符号位除外。

补码 : (数据以该状态进行运算)正数的补码与其原码相同;负数的补码是在其反码的末位加1。

2.6 位运算-基本位运算符

public class Demo2 {
   
    /* 位运算: 位运算符指的是二进制位的运算,先将十进制数转成二进制后再进行运算。 在二进制位运算中,1表示true,0表示false。 & 位与 : 遇false则false, 遇0则0 00000000 00000000 00000000 00000110 // 6的二进制 & 00000000 00000000 00000000 00000010 // 2的二进制 ----------------------------------------- 00000000 00000000 00000000 00000010 // 结果: 2 | 位或 : 遇true则true, 遇1则1 ^ 位异或 : 相同为false, 不同为true ~ 取反 : 全部取反, 0变1, 1变0 (也包括符号位) 00000000 00000000 00000000 00000110 // 6的二进制补码 ~ 11111111 11111111 11111111 11111001 - 1 // -1求反码 ------------------------------------ 11111111 11111111 11111111 11111000 // 反码推原码 10000000 00000000 00000000 00000111 // -7 */
    public static void main(String[] args) {
   
        System.out.println(6 & 2);
        System.out.println(~6);
    }
}

2.7 位运算-位移运算符

位运算概述 : 位运算符指的是二进制位的运算,先将十进制数转成二进制后再进行运算。在二进制位运算中,1表示true,0表示false。

位运算符介绍 :

代码 :

public class Demo3 {
   
    /* 位移运算符: << 有符号左移运算,二进制位向左移动, 左边符号位丢弃, 右边补齐0 运算规律: 向左移动几位, 就是乘以2的几次幂 12 << 2 (0)0000000 00000000 00000000 000011000 // 12的二进制 ----------------------------------------------------------------------------- >> 有符号右移运算,二进制位向右移动, 使用符号位进行补位 运算规律: 向右移动几位, 就是除以2的几次幂 000000000 00000000 00000000 0000001(1) // 3的二进制 ----------------------------------------------------------------------------- >>> 无符号右移运算符, 无论符号位是0还是1,都补0 010000000 00000000 00000000 00000110 // -6的二进制 */
    public static void main(String[] args) {
   
        System.out.println(12 << 1);  // 24
        System.out.println(12 << 2);  // 48

    }
}

public class Demo4 {
   
    /* ^ 运算符的特点 一个数, 被另外一个数, 异或两次, 该数本身不变 */
    public static void main(String[] args) {
   
        System.out.println(10 ^ 5 ^ 10);
    }
}

3.基础练习

3.1 数据交换

案例需求

​ 已知两个整数变量a = 10,b = 20,使用程序实现这两个变量的数据交换
最终输出a = 20,b = 10;

代码实现

public class Test1 {
   
    /* 需求:已知两个整数变量a = 10,b = 20,使用程序实现这两个变量的数据交换 最终输出a = 20,b = 10; 思路: 1. 定义一个三方变量temp,将a原本记录的值,交给temp记录 (a的值,不会丢了) 2. 使用 a 变量记录 b 的值,(第一步交换完毕,b的值也丢不了了) 3. 使用 b 变量记录 temp的值,也就是a原本的值 (交换完毕) 4. 输出 a 和 b 变量即可 */
    /* 动态初始化格式: 数据类型[][] 变量名 = new 数据类型[m][n]; m表示这个二维数组,可以存放多少个一维数组 n表示每一个一维数组,可以存放多少个元素 */
    public static void main(String[] args) {
   
        int a = 10;
        int b = 20;

        // 将a原本记录的值,交给temp记录 (a的值,不会丢了)
        int temp = a;
        // 用 a 变量记录 b 的值,(第一步交换完毕,b的值也丢不了了)
        a = b;
        // 使用 b 变量记录 temp的值,也就是a原本的值 (交换完毕)
        b = temp;

        // 输出 a 和 b 变量即可
        System.out.println("a=" + a);
        System.out.println("b=" + b);
    }
}

3.2 数组反转

案例需求 :

​ 已知一个数组 arr = {19, 28, 37, 46, 50}; 用程序实现把数组中的元素值交换,

​ 交换后的数组 arr = {50, 46, 37, 28, 19}; 并在控制台输出交换后的数组元素

实现步骤 :

1. 定义两个变量, start和end来表示开始和结束的指针.          
  1. 确定交换条件, start < end 允许交换
  2. 循环中编写交换逻辑代码
  3. 每一次交换完成, 改变两个指针所指向的索引 start++, end–
  4. 循环结束后, 遍历数组并打印, 查看反转后的数组

代码实现 :

public class Test2 {
   
    /* 需求:已知一个数组 arr = {19, 28, 37, 46, 50}; 用程序实现把数组中的元素值交换, 交换后的数组 arr = {50, 46, 37, 28, 19}; 并在控制台输出交换后的数组元素。 步骤: 1. 定义两个变量, start和end来表示开始和结束的指针. 2. 确定交换条件, start < end 允许交换 3. 循环中编写交换逻辑代码 4. 每一次交换完成, 改变两个指针所指向的索引 start++, end-- 5. 循环结束后, 遍历数组并打印, 查看反转后的数组 */
    public static void main(String[] args) {
   
        int[] arr = {
   19, 28, 37, 46, 50};
        // 1. 定义两个变量, start和end来表示开始和结束的指针.
        int start = 0;
        int end = arr.length -1;
        // 2. 确定交换条件, start < end 允许交换
        // 4. 每一次交换完成, 改变两个指针所指向的索引 start++, end--
        // for(int start = 0, end = arr.length -1; start < end; start++, end--)
        for( ; start < end; start++, end--){
   
            // 3. 循环中编写交换逻辑代码
            int temp = arr[start];
            arr[start] = arr[end];
            arr[end] = temp;
        }

        for (int i = 0; i < arr.length; i++) {
   
            System.out.println(arr[i]);
        }
    }
}

3.3 二维数组概述

概述 : 二维数组也是一种容器,不同于一维数组,该容器存储的都是一维数组容器

3.4 二维数组动态初始化

动态初始化格式:

数据类型[][] 变量名 = new 数据类型[m][n];
m表示这个二维数组,可以存放多少个一维数组
n表示每一个一维数组,可以存放多少个元素
public class Demo1Array {
   
    /* 动态初始化格式: 数据类型[][] 变量名 = new 数据类型[m][n]; m表示这个二维数组,可以存放多少个一维数组 n表示每一个一维数组,可以存放多少个元素 */
    public static void main(String[] args) {
   
        // 数据类型[][] 变量名 = new 数据类型[m][n];
        int[][] arr = new int[3][3];
        /* [[I@10f87f48 @ : 分隔符 10f87f48 : 十六进制内存地址 I : 数组中存储的数据类型 [[ : 几个中括号就代表的是几维数组 */
        System.out.println(arr);

        /* 二维数组存储一维数组的时候, 存储的是一维数组的内存地址 */
        System.out.println(arr[0]);
        System.out.println(arr[1]);
        System.out.println(arr[2]);

        System.out.println(arr[0][0]);
        System.out.println(arr[1][1]);
        System.out.println(arr[2][2]);

        // 向二维数组中存储元素
        arr[0][0] = 11;
        arr[0][1] = 22;
        arr[0][2] = 33;

        arr[1][0] = 11;
        arr[1][1] = 22;
        arr[1][2] = 33;

        arr[2][0] = 11;
        arr[2][1] = 22;
        arr[2][2] = 33;

        // 从二维数组中取出元素并打印
        System.out.println(arr[0][0]);
        System.out.println(arr[0][1]);
        System.out.println(arr[0][2]);
        System.out.println(arr[1][0]);
        System.out.println(arr[1][1]);
        System.out.println(arr[1][2]);
        System.out.println(arr[2][0]);
        System.out.println(arr[2][1]);
        System.out.println(arr[2][2]);
    }
}

3.5 二维数组访问元素的细节问题

问题 : 二维数组中存储的是一维数组, 那能不能存入 [提前创建好的一维数组] 呢 ?

答 : 可以的

代码实现

public class Demo2Array {
   
    /* 问题: 二维数组中存储的是一维数组, 那能不能存入 [提前创建好的一维数组] 呢 ? 答 : 可以的 */
    public static void main(String[] args) {
   
        int[] arr1 = {
   11,22,33};
        int[] arr2 = {
   44,55,66};
        int[] arr3 = {
   77,88,99,100};

        int[][] arr = new int[3][3];

        arr[2][3] = 100;

        arr[0] = arr1;
        arr[1] = arr2;
        arr[2] = arr3;

        System.out.println(arr[1][2]);
        System.out.println(arr[2][3]);
    }
}

3.6 二维数组静态初始化

**完整格式 :** 数据类型[][] 变量名 = new 数据类型[][]{ {元素1, 元素2...} , {元素1, 元素2...} 

**简化格式 :**  数据类型[][] 变量名 = { {元素1, 元素2...} , {元素1, 元素2...} ...};

**代码实现 : **

public class Demo3Array {
   
    /* 完整格式:数据类型[][] 变量名 = new 数据类型[][]{ {元素1, 元素2...} , {元素1, 元素2...} ...}; 简化格式: 数据类型[][] 变量名 = { {元素1, 元素2...} , {元素1, 元素2...} ...}; */
    public static void main(String[] args) {
   
        int[] arr1 = {
   11,22,33};
        int[] arr2 = {
   44,55,66};

        int[][] arr = {
   {
   11,22,33}, {
   44,55,66}};
        System.out.println(arr[0][2]);

        int[][] array = {
   arr1,arr2};
        System.out.println(array[0][2]);
    }
}

3.7 二维数组遍历

需求 :

​ 已知一个二维数组 arr = { {11, 22, 33}, {33, 44, 55}};

​ 遍历该数组,取出所有元素并打印

步骤 :

1. 遍历二维数组,取出里面每一个一维数组
2. 在遍历的过程中,对每一个一维数组继续完成遍历,获取内部存储的每一个元素

代码实现 :

public class Test1 {
   
    /* 需求: 已知一个二维数组 arr = {
   {11, 22, 33}, {33, 44, 55}}; 遍历该数组,取出所有元素并打印 步骤: 1. 遍历二维数组,取出里面每一个一维数组 2. 在遍历的过程中,对每一个一维数组继续完成遍历,获取内部存储的每一个元素 */
    public static void main(String[] args) {
   
        int[][] arr = {
   {
   11, 22, 33}, {
   33, 44, 55}};

        // 1. 遍历二维数组,取出里面每一个一维数组
        for (int i = 0; i < arr.length; i++) {
   
            //System.out.println(arr[i]);
            // 2. 在遍历的过程中,对每一个一维数组继续完成遍历,获取内部存储的每一个元素
            //int[] temp = arr[i];
            for (int j = 0; j < arr[i].length; j++) {
   
                System.out.println(arr[i][j]);
            }
        }
    }
}

3.8 二维数组求和

需求 :

某公司季度和月份统计的数据如下:单位(万元)
第一季度:22,66,44
第二季度:77,33,88
第三季度:25,45,65
第四季度:11,66,99

步骤 :

  1. 定义求和变量,准备记录最终累加结果
  2. 使用二维数组来存储数据,每个季度是一个一维数组,再将4个一维数组装起来
  3. 遍历二维数组,获取所有元素,累加求和
  4. 输出最终结果

代码实现 :


public class Test2 {
   
    /* 需求: 某公司季度和月份统计的数据如下:单位(万元) 第一季度:22,66,44 第二季度:77,33,88 第三季度:25,45,65 第四季度:11,66,99 步骤: 1. 定义求和变量,准备记录最终累加结果 2. 使用二维数组来存储数据,每个季度是一个一维数组,再将4个一维数组装起来 3. 遍历二维数组,获取所有元素,累加求和 4. 输出最终结果 */
    public static void main(String[] args) {
   
        // 1. 定义求和变量,准备记录最终累加结果
        int sum = 0;
        // 2. 使用二维数组来存储数据,每个季度是一个一维数组,再将4个一维数组装起来
        int[][] arr = {
    {
   22,66,44} , {
   77,33,88} , {
   25,45,65} , {
   11,66,99}};
        // 3. 遍历二维数组,获取所有元素,累加求和
        for (int i = 0; i < arr.length; i++) {
   
            for(int j = 0; j < arr[i].length; j++){
   
                sum += arr[i][j];
            }
        }
        // 4. 输出最终结果
        System.out.println(sum);
    }
}