//土尔逊Torson 编写于2023/05/18
#define _CRT_SECURE_NO_WARNINGS
#include <iostream>
#include <cstdio>
using namespace std;
struct Matrix {
int matrix[10][10];
int row, col;
Matrix(int r,int c) : row(r), col(c) {}
};
Matrix Multiply(Matrix x, Matrix y) {
Matrix answer(x.row, y.col);
for (int i = 0; i < answer.row; ++i) {
for (int j = 0; j < answer.col; ++j) {
answer.matrix[i][j] = 0;
for (int k = 0; k < x.col; ++k) {
answer.matrix[i][j] += x.matrix[i][k] * y.matrix[k][j];
}
}
}
return answer;
}
void PrintMatrix(Matrix x) {
for (int i = 0; i < x.row; ++i) {
for (int j = 0; j < x.col; ++j) {
if (j != 0) {
printf(" ");
}
printf("%d", x.matrix[i][j]);
}
printf("\n");
}
return;
}
Matrix FastExponentiation(Matrix x, int k) { //快速幂矩阵计算
Matrix answer(x.row, x.col);
for (int i = 0; i < answer.row; ++i) { //初始化为单位矩阵
for (int j = 0; j < answer.col; ++j) {
if (i == j) {
answer.matrix[i][j] = 1;
}
else {
answer.matrix[i][j] = 0;
}
}
}
while (k != 0) { //不断将k转换为二进制
if (k % 2 == 1) { //累乘x的2^k次幂
answer = Multiply(answer, x);
}
k /= 2;
x = Multiply(x, x); //x不断平方
}
return answer;
}
int main() {
int n, k;
while (scanf("%d%d", &n, &k) != EOF) {
Matrix x(n, n);
for (int i = 0; i < x.row; ++i) {
for (int j = 0; j < x.col; ++j) {
scanf("%d", &x.matrix[i][j]);
}
}
Matrix answer = FastExponentiation(x, k);
PrintMatrix(answer);
}
return EXIT_SUCCESS;
}
// 64 位输出请用 printf("%lld")