原文:http://blog.csdn.net/mao_xiao_feng/article/details/53453926
max pooling是CNN当中的最大值池化操作,其实用法和卷积很类似
有些地方可以从卷积去参考【TensorFlow】tf.nn.conv2d是怎样实现卷积的?
tf.nn.max_pool(value, ksize, strides, padding, name=None)
参数是四个,和卷积很类似:
第一个参数value:需要池化的输入,一般池化层接在卷积层后面,所以输入通常是feature map,依然是[batch, height, width, channels]这样的shape
第二个参数ksize:池化窗口的大小,取一个四维向量,一般是[1, height, width, 1],因为我们不想在batch和channels上做池化,所以这两个维度设为了1
第三个参数strides:和卷积类似,窗口在每一个维度上滑动的步长,一般也是[1, stride,stride, 1]
第四个参数padding:和卷积类似,可以取’VALID’ 或者’SAME’
返回一个Tensor,类型不变,shape仍然是[batch, height, width, channels]这种形式
示例源码:
假设有这样一张图,双通道
第一个通道:

第二个通道:

池化

import  tensorflow as tf
sess = tf.InteractiveSession()
a=tf.constant([
        [[1.0,2.0,3.0,4.0], [5.0,6.0,7.0,8.0], [8.0,7.0,6.0,5.0], [4.0,3.0,2.0,1.0]],
        [[4.0,3.0,2.0,1.0], [8.0,7.0,6.0,5.0], [1.0,2.0,3.0,4.0], [5.0,6.0,7.0,8.0]]
    ])
#print(sess.run(a))
a = tf.reshape(a,[1,4,4,2])
#print(sess.run(a))
pooling=tf.nn.max_pool(a,[1,2,2,1],[1,1,1,1],padding='VALID')
with tf.Session() as sess:
    print("image:")
    image=sess.run(a)
    print (image)
    print("reslut:")
    result=sess.run(pooling)
    print (result)

结果:

    image:  
    [[[[ 1. 2.] [ 3. 4.] [ 5. 6.] [ 7. 8.]] [[ 8. 7.] [ 6. 5.] [ 4. 3.] [ 2. 1.]] [[ 4. 3.] [ 2. 1.] [ 8. 7.] [ 6. 5.]] [[ 1. 2.] [ 3. 4.] [ 5. 6.] [ 7. 8.]]]]  
    reslut:  
    [[[[ 8. 7.] [ 6. 6.] [ 7. 8.]] [[ 8. 7.] [ 8. 7.] [ 8. 7.]] [[ 4. 4.] [ 8. 7.] [ 8. 8.]]]]  

池化后的结果也就是: