题意:
A number is called quasibinary if its decimal representation contains only digits 0 or 1. For example, numbers 0, 1, 101, 110011 — are quasibinary and numbers 2, 12, 900 are not.
You are given a positive integer n. Represent it as a sum of minimum number of quasibinary numbers.
题解:
因为分出来得数字只能是十进制,并且只可以用0和1组成,那么最少需要几个数,取决于给定得数得 从最低位到最高位中 数字最大得那一位。
其次我们对于那个数进行减操作即可,某位不为0就输出1,为0就输出0,直到全为0为止。
/*Keep on going Never give up*/ //#pragma GCC optimize(3,"Ofast","inline") #include<bits/stdc++.h> #define int long long #define endl '\n' #define Accepted 0 #define AK main() #define I_can signed using namespace std; const int maxn =2e5+10; const int MaxN = 0x3f3f3f3f; const int MinN = 0xc0c0c00c; typedef long long ll; const int inf=0x3f3f3f3f; const ll mod=1e9+7; using namespace std; int sol(int x){ int res=0; while(x){ res=max(res,x%10); x/=10; } return res; } I_can AK{ ios::sync_with_stdio(false); int n; cin>>n; int x=sol(n); cout<<x<<endl; string s=to_string(n); for(int i=0;i<x;i++){ bool flag=false; for(auto &j:s){ if(j>='1') flag=true; if(j=='0'&&flag) cout<<"0"; else if(j!='0'){ j=j-1; cout<<"1"; } } cout<<" "; } //cout<<s<<endl; return 0; }