二分+前缀和
求解最小值,观察题目给出的判断条件,W随着变大时,区间中符合要求的会减少,同时所有,所以也随着变小,求得Y也是递减,可以得知W和Y是满足二分的关系。
在求解每一个时,运用到前缀和的思想O(1)实现。
总的时间复杂度
Code
#pragma GCC target("avx,sse2,sse3,sse4,popcnt") #pragma GCC optimize("O2,O3,Ofast,inline,unroll-all-loops,-ffast-math") #include <bits/stdc++.h> using namespace std; #define js ios::sync_with_stdio(false);cin.tie(0); cout.tie(0) #define all(vv) vv.begin(), vv.end() #define endl "\n" typedef long long ll; typedef unsigned long long ull; typedef long double ld; const ll MOD = 1e9 + 7; inline ll read() { ll s = 0, w = 1; char ch = getchar(); for (; !isdigit(ch); ch = getchar()) if (ch == '-') w = -1; for (; isdigit(ch); ch = getchar()) s = (s << 1) + (s << 3) + (ch ^ 48); return s * w; } inline void write(ll x) { if (!x) { putchar('0'); return; } char F[40]; ll tmp = x > 0 ? x : -x; if (x < 0)putchar('-'); int cnt = 0; while (tmp > 0) { F[cnt++] = tmp % 10 + '0'; tmp /= 10; } while (cnt > 0)putchar(F[--cnt]); } inline ll gcd(ll x, ll y) { return y ? gcd(y, x % y) : x; } ll qpow(ll a, ll b) { ll ans = 1; while (b) { if (b & 1) ans *= a; b >>= 1; a *= a; } return ans; } ll qpow(ll a, ll b, ll mod) { ll ans = 1; while (b) { if (b & 1)(ans *= a) %= mod; b >>= 1; (a *= a) %= mod; }return ans % mod; } inline int lowbit(int x) { return x & (-x); } const int N = 2e5 + 7; int n, m; ll s, w[N], v[N], l[N], r[N]; int cnt[N]; ll sum[N]; ll check(int x) { for (int i = 1; i <= n; ++i) if (w[i] >= x) sum[i] = sum[i - 1] + v[i], cnt[i] = cnt[i - 1] + 1; else sum[i] = sum[i - 1], cnt[i] = cnt[i - 1]; ll ans = 0; for (int i = 0; i < m; ++i) ans += (cnt[r[i]] - cnt[l[i] - 1]) * (sum[r[i]] - sum[l[i] - 1]); return ans; } int main() { n = read(), m = read(), s = read(); for (int i = 1; i <= n; ++i) w[i] = read(), v[i] = read(); for (int i = 0; i < m; ++i) l[i] = read(), r[i] = read(); int l = 0, r = 1e6 + 7; while (l < r) { int mid = r + l + 1 >> 1; if (check(mid) >= s) l = mid; else r = mid - 1; } write(min(abs(check(r) - s), abs(s - check(r + 1)))); return 0; }