思路
因为对于一个环,给其中任何一点支援都是等效的,因此先对原图进行缩点.
对于缩点后的图,入度为0的点不能被其他学校支援,其他入读不为0的都能被其他学校支援,因此第一问答案就是入度为0的点.
而要满足第二问的条件,必须使都在一个强连通分量才行.这样答案就是max(入度为0的点个数,出度为0的点个数).特别地,所有点都在一个强连通分量时答案为0.
代码
#include<bits/stdc++.h> using namespace std; #define i64 long long #define fp( i, b, e ) for ( int i(b), I(e); i <= I; ++i ) #define fd( i, b, e ) for ( int i(b), I(e); i >= I; --i ) #define go( i, b ) for ( int i(b), v(to[i]); i; v = to[i = nxt[i]] ) template<typename T> inline void cmax( T &x, T y ){ x < y ? x = y : x; } template<typename T> inline void cmin( T &x, T y ){ y < x ? x = y : x; } #define getchar() ( p1 == p2 && ( p1 = bf, p2 = bf + fread( bf, 1, 1 << 21, stdin ), p1 == p2 ) ? EOF : *p1++ ) char bf[1 << 21], *p1(bf), *p2(bf); template<typename T> inline void read( T &x ){ char t(getchar()), flg(0); x = 0; for ( ; !isdigit(t); t = getchar() ) flg = t == '-'; for ( ; isdigit(t); t = getchar() ) x = x * 10 + ( t & 15 ); flg ? x = -x : x; } clock_t t_bg, t_ed; const int MAXN = 105; int N, hd[MAXN], nxt[MAXN*MAXN], to[MAXN*MAXN], tot; inline void addedge( int x, int y ){ nxt[++tot] = hd[x], hd[x] = tot, to[tot] = y; } int dfn[MAXN], low[MAXN], num, c[MAXN], cnt, stk[MAXN], tp; bool v1[MAXN], v2[MAXN]; void tarjan( int u ){ low[u] = dfn[u] = ++num, stk[++tp] = u; go( i, hd[u] ) if ( !dfn[v] ) tarjan(v), cmin( low[u], low[v] ); else if ( !c[v] ) cmin( low[u], dfn[v] ); if ( low[u] == dfn[u] ){ c[u] = ++cnt; while( stk[tp] != u ) c[stk[tp--]] = cnt; --tp; } } signed main(){ t_bg = clock(); read(N); fp( i, 1, N ){ int x; while( (read(x), x) ) addedge( i, x ); } fp( i, 1, N ) if ( !c[i] ) tarjan(i); fp( u, 1, N ) go( i, hd[u] ) if ( c[u] != c[v] ) v1[c[v]] = 1, v2[c[u]] = 1; int r1(0), r2(0); fp( i, 1, cnt ) r1 += !v1[i], r2 += !v2[i]; printf( "%d\n%d\n", r1, cnt == 1 ? 0 : max( r1, r2 ) ); t_ed = clock(); fprintf( stderr, "\n========info========\ntime : %.3f\n====================\n", (double)( t_ed - t_bg ) / CLOCKS_PER_SEC ); return 0; }