追债之旅
题目地址:
基本思路:
比较容易看出是一个最短路,我们把每个点,根据个到达时间拆成个点,
然后我们一样跑,只是在的过程中多记录一下耗时就行了。
最后我们在里取最小值就是答案了,如果都不能到达那就输出-1。
参考代码:
#pragma GCC optimize(2) #pragma GCC optimize(3) #include <bits/stdc++.h> using namespace std; #define IO std::ios::sync_with_stdio(false); cin.tie(0) #define int long long #define SZ(x) ((int)(x).size()) #define all(x) (x).begin(), (x).end() #define rep(i, l, r) for (int i = l; i <= r; i++) #define per(i, l, r) for (int i = l; i >= r; i--) #define mset(s, _) memset(s, _, sizeof(s)) #define pb push_back #define pii pair <int, int> #define mp(a, b) make_pair(a, b) #define INF 0x3f3f3f3f inline int read() { int x = 0, neg = 1; char op = getchar(); while (!isdigit(op)) { if (op == '-') neg = -1; op = getchar(); } while (isdigit(op)) { x = 10 * x + op - '0'; op = getchar(); } return neg * x; } inline void print(int x) { if (x < 0) { putchar('-'); x = -x; } if (x >= 10) print(x / 10); putchar(x % 10 + '0'); } const int maxn = 1010; struct Node { int w, d, u; bool operator<(const Node &no) const { return w > no.w; } }; int n,m,k,a[maxn]; int cnt = 0, head[maxn]; struct Edge { int next, to, w; } edge[20010]; void init() { cnt = 0; memset(head, -1, sizeof(head)); } void add_edge(int u, int v, int w) { edge[++cnt] = {head[u], v, w}; head[u] = cnt; } bool vis[20][maxn]; int dis[20][maxn]; void dijkstra() { mset(dis, INF); mset(vis,false); priority_queue<Node> que; dis[0][1] = 0; que.push({0, 0, 1}); while (!que.empty()) { int u = que.top().u, d = que.top().d; que.pop(); if (vis[d][u]) continue; vis[d][u] = true; for (int i = head[u]; i != -1; i = edge[i].next) { int to = edge[i].to; if (d + 1 <= k && dis[d + 1][to] > dis[d][u] + edge[i].w + a[d + 1]) { dis[d + 1][to] = dis[d][u] + edge[i].w + a[d + 1]; que.push({dis[d + 1][to], d + 1, to}); } } } } signed main() { IO; cin >> n >> m >> k; init(); rep(i,1,m){ int u,v,w; cin >> u >> v >> w; add_edge(u,v,w); add_edge(v,u,w); } for(int i = 1 ; i <= k ; i++) cin >> a[i]; dijkstra(); int ans = INF; for(int i = 0 ; i <= k ; i++) ans = min(ans,dis[i][n]); if(ans == INF) cout << -1 << '\n'; else cout << ans << '\n'; return 0; }