小A的最短路
思路
树上问题求两个点的最短距离,显然能用来进行的查询,引入了两个无边权的点,所以我们的路劲就可以规划成三种,只要在这三个当中取一个最小值就行了。接下来就是考虑求了,有一种较为快速的求的在线方法,那就是树链剖分,于是套上去(个人认为树剖求较为好写),然后就可以开始最短路求解了。
代码
/* Author : lifehappy */ #pragma GCC optimize(2) #pragma GCC optimize(3) #include #define mp make_pair #define pb push_back #define endl '\n' using namespace std; typedef long long ll; typedef unsigned long long ull; typedef pair pii; const double pi = acos(-1.0); const double eps = 1e-7; const int inf = 0x3f3f3f3f; inline ll read() { ll f = 1, x = 0; char c = getchar(); while(c '9') { if(c == '-') f = -1; c = getchar(); } while(c >= '0' && c <= '9') { x = (x << 1) + (x << 3) + (c ^ 48); c = getchar(); } return f * x; } void print(ll x) { if(x < 10) { putchar(x + 48); return ; } print(x / 10); putchar(x % 10 + 48); } const int N = 3e5 + 10; int sz[N], son[N], fa[N], dep[N], top[N], n, m; int head[N], to[N << 1], nex[N << 1], cnt = 1; void add(int x, int y) { to[cnt] = y; nex[cnt] = head[x]; head[x] = cnt++; } void dfs1(int rt, int f) { fa[rt] = f, sz[rt] = 1; dep[rt] = dep[f] + 1; for(int i = head[rt]; i; i = nex[i]) { if(to[i] == f) continue; dfs1(to[i], rt); sz[rt] += sz[to[i]]; if(!son[rt] || sz[to[i]] > sz[son[rt]]) son[rt] = to[i]; } } void dfs2(int rt, int tp) { top[rt] = tp; if(!son[rt]) return ; dfs2(son[rt], tp); for(int i = head[rt]; i; i = nex[i]) { if(to[i] == fa[rt] || to[i] == son[rt]) continue; dfs2(to[i], to[i]); } } int lca(int x, int y) { while(top[x] != top[y]) { if(dep[top[x]] < dep[top[y]]) swap(x, y); x = fa[top[x]]; } return dep[x] < dep[y] ? x : y; } int dis(int x, int y) { return dep[x] + dep[y] - 2 * dep[lca(x, y)]; } int main() { // freopen("in.txt", "r", stdin); // freopen("out.txt", "w", stdout); //ios::sync_with_stdio(false), cin.tie(0), cout.tie(0); n = read(); for(int i = 1; i < n; i++) { int x = read(), y = read(); add(x, y); add(y, x); } int u = read(), v = read(); dfs1(1, 0); dfs2(1, 1); m = read(); for(int i = 1; i <= m; i++) { int x = read(), y = read(); printf("%d\n", min({dis(x, y), dis(x, u) + dis(v, y), dis(x, v) + dis(u, y)})); } return 0; }