插入排序

        属于内部排序法,是对于要排序的元素以插入的方式找寻该元素的适当位置,以达到排序的目的。
插入排序 Insertion Sorting :把 n  个待排序的元素看成为一个有序表和一个无序表,开始时有序表中只包含一个元素,无序表中包含有 n-1  个元素,排序过程中每次从无序表中取出第一个元素,把它的排序码依次与有序表元素的排序码进行比较,将它插入到有序表中的适当位置,使之成为新的有序表。

        插入排序示意图:

动图表示:

上代码:

package com.leo.sort;

import java.text.SimpleDateFormat;
import java.util.Arrays;
import java.util.Date;

public class InsertSort {
	public static void main(String[] args) {
		//int[] arr = {101, 34, 119, 1, -1, 89}; 
		// 创建要给80000个的随机的数组
		int[] arr = new int[80000];
		for (int i = 0; i < 80000; i++) {
			arr[i] = (int) (Math.random() * 8000000); // 生成一个[0, 8000000) 数
		}

		System.out.println("插入排序前");
		Date data1 = new Date();
		SimpleDateFormat simpleDateFormat = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
		String date1Str = simpleDateFormat.format(data1);
		System.out.println("排序前的时间是=" + date1Str);
		insertSort(arr); //调用插入排序算法	
		Date data2 = new Date();
		String date2Str = simpleDateFormat.format(data2);
		System.out.println("排序前的时间是=" + date2Str);	
	}
	
	//插入排序
	public static void insertSort(int[] arr) {
		int insertVal = 0;
		int insertIndex = 0;
		//使用for循环来把代码简化
		for(int i = 1; i < arr.length; i++) {
			//定义待插入的数
			insertVal = arr[i];
			insertIndex = i - 1; // 即arr[1]的前面这个数的下标
	
			// 给insertVal 找到插入的位置
			// 1. insertIndex >= 0 保证在给insertVal 找插入位置,不越界
			// 2. insertVal < arr[insertIndex] 待插入的数,还没有找到插入位置
			// 3. 就需要将 arr[insertIndex] 后移
			while (insertIndex >= 0 && insertVal < arr[insertIndex]) {
				arr[insertIndex + 1] = arr[insertIndex];// arr[insertIndex]
				insertIndex--;
			}
			// 当退出while循环时,说明插入的位置找到, insertIndex + 1
			// 举例:理解不了,我们一会 debug
			//这里我们判断是否需要赋值
			if(insertIndex + 1 != i) {
				arr[insertIndex + 1] = insertVal;
			}

		}
			
	}

}

存在问题: 当 需要插入的数是较小的数时, 后移的次数明显增多,对 效率有影响.

所以优化一下插入排序----就是希尔排序!

希尔排序

       希尔(Donald Shell)提出于1959 年 。简单插入排序Plus版本,也叫缩小增量排序
希尔排序是把记录按下标的一定增量分组,对每组使用直接插入排序算法排序;随着增量逐渐减少,每组包含
的关键词越来越多, 当增量减至 1  时,整个文件恰被分成一组,算法终止。

就是在简单插入排序之前加入几个‘’优化步骤‘’。就是在交换时候不要发现一个交换一个!!!

动图:

代码:

package com.leo.sort;

import java.text.SimpleDateFormat;
import java.util.Date;

public class 希尔排序 {

	public static void main(String[] args) {
		
		// 创建要给80000个的随机的数组
		int[] arr = new int[80000];
		for (int i = 0; i < 80000; i++) {
			arr[i] = (int) (Math.random() * 8000000); // 生成一个[0, 8000000) 数
		}

		Date data1 = new Date();
		SimpleDateFormat simpleDateFormat = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
		String date1Str = simpleDateFormat.format(data1);
		System.out.println("排序前的时间是=" + date1Str);
		
		shellSort(arr);//移位方式
		
		Date data2 = new Date();
		String date2Str = simpleDateFormat.format(data2);
		System.out.println("排序前的时间是=" + date2Str);
	}

	public static void shellSort(int[] arr) {
		
		int temp = 0;
		int count = 0;
		// 根据前面的逐步分析,使用循环处理
		for (int gap = arr.length / 2; gap > 0; gap /= 2) {
			for (int i = gap; i < arr.length; i++) {
				// 遍历各组中所有的元素(共gap组,每组有个元素), 步长gap
				for (int j = i - gap; j >= 0; j -= gap) {
					// 如果当前元素大于加上步长后的那个元素,说明交换
					if (arr[j] > arr[j + gap]) {
						temp = arr[j];
						arr[j] = arr[j + gap];
						arr[j + gap] = temp;
					}
				}
			}
		}
	}
	
	//对交换式的希尔排序进行优化->移位法
	public static void shellSort2(int[] arr) {
		
		// 增量gap, 并逐步的缩小增量
		for (int gap = arr.length / 2; gap > 0; gap /= 2) {
			// 从第gap个元素,逐个对其所在的组进行直接插入排序
			for (int i = gap; i < arr.length; i++) {
				int j = i;
				int temp = arr[j];
				if (arr[j] < arr[j - gap]) {
					while (j - gap >= 0 && temp < arr[j - gap]) {
						//移动
						arr[j] = arr[j-gap];
						j -= gap;
					}
					//当退出while后,就给temp找到插入的位置
					arr[j] = temp;
				}

			}
		}
	}

}