链接:https://ac.nowcoder.com/acm/contest/881/E
来源:牛客网
题目描述
Bobo has a string of length 2(n + m) which consists of characters `A` and `B`. The string also has a fascinating property: it can be decomposed into (n + m) subsequences of length 2, and among the (n + m) subsequences n of them are `AB` while other m of them are `BA`.
Given n and m, find the number of possible strings modulo (109+7)(109+7).
Given n and m, find the number of possible strings modulo (109+7)(109+7).
输入描述:
The input consists of several test cases and is terminated by end-of-file. Each test case contains two integers n and m. * 0≤n,m≤1030≤n,m≤103 * There are at most 2019 test cases, and at most 20 of them has max{n,m}>50max{n,m}>50.
输出描述:
For each test case, print an integer which denotes the result.
求解满足可以拆成n个“AB”的子序列和m个“BA”子序列的字符串数量有几个?
贪心可得判断结论::每一个满足条件的字符串都必然满足前n个A与B匹配,后m个A与B匹配的这种分配情况,且不满足这样分配的字符串一定是错的。对于B来说一样。 这样的话就可以进行dp,dp[i][j]表示现在来说有了i个A和j个B的合法字符串有多少种了。 转移: 假设放A时,需要满足这第i个A是满足之前要求的 即:如果i+1小于等于n的话随意放即可,因为这样做不需要对已经正确的“前状态”进行判定(对这里不明白的可以私聊我给你解释) 即: if(i+1<=n) 不需要做判定就对了; 如果i+1大于n的话需要满足有足够的B(代表数量j)可以为多出来的A组成BA(后m个A为了组成BA而存在) 即:if(i+1>n) j 需要>= (i+1-n); 连立可得:: 能否放下此时的A只需要判断是否j>=(i+1-n)即可。 B一样
#include<bits/stdc++.h> using namespace std; const int maxn = 1005; const int mod = 1e9 + 7; long long dp[maxn * 4][maxn * 2]; int n, m; int main() { ios::sync_with_stdio(0); while (cin >> n >> m) { for (int i = 0; i <= n + m; i++) for (int j = 0; j <= n + m; j++)dp[i][j] = 0; dp[0][0] = 1; for (int i = 0; i <= n + m; i++) { for (int j = 0; j <= n + m; j++) { if (j >= i + 1 - n) { dp[i + 1][j] = (dp[i + 1][j] + dp[i][j]) % mod; } if (i >= j + 1 - m) { dp[i][j + 1] = (dp[i][j + 1] + dp[i][j]) % mod; } } } cout << dp[n + m][n + m] << "\n"; } return 0; }