You are given positive integers n(n≤109),m(m≤2×109),p(p≤2×109)n ( n \le 10^9), m ( m \le 2 \times 10^9), p(p \le 2 \times 10^9)n(n109),m(m2×109),p(p2×109) and you need to calculate the following product modulo ppp.

∏i=1n∏j=1n∏k=1nmgcd⁡(i,j)[k∣gcd⁡(i,j)]\displaystyle \displaystyle\prod_{i = 1}^n \displaystyle\prod_{j = 1}^n \displaystyle\prod_{k = 1}^n m^{\gcd(i,j)[k|\gcd(i,j)]}i=1nj=1nk=1nmgcd(i,j)[kgcd(i,j)]

Input

Each test file contains a single test case. In each test file:

There are three positive integers n,m,pn, m, pn,m,p which are separated by spaces. It is guaranteed that ppp is a prime number.

Output

An integer representing your answer.

样例输入1复制

2 2 1000000007

样例输出1复制

128

样例输入2复制

233 131072 4894651

样例输出2复制

748517

样例输入3复制

1000000000 999999997 98765431

样例输出3复制

50078216
  • main.cpp
  • 代码高亮 Sublime Vim Emacs
    环境配色亮色配色暗色配色
    暗色配色

    返回

    • 亮色配色
    • 暗色配色
    代码缩进248
    4

    返回

    • 2
    • 4
    • 8
                                                                     C++ 语言 (C++11)                                                                 C++ 语言 (C++14)                                                                 C 语言                                                                 Java 语言                                                                 Python 语言 (2.7)                                                                 Python 语言 (3.5)
    C++ 语言 (C++11)

    返回

    • C++ 语言 (C++11)
    • C++ 语言 (C++14)
    • C 语言
    • Java 语言
    • Python 语言 (2.7)
    • Python 语言 (3.5)
通用
逻辑
循环
数学
文本
列表
颜色
变量
函数
x
 ans+=(2*djsphi(n/l)%mod-1+mod)%mod*((cal(r)-cal(l-1)+mod)%mod)%mod;
39
 {
40
 phi[i*prim[j]]=phi[i]*(prim[j]-1);
41
 d[i*prim[j]]=d[i]*d[prim[j]];
42
 a[i*prim[j]]=1;
43
 }
44
 }
45
 }
46
 for(int i=1;i<maxn;i++)
47
 sum2[i]=sum2[i-1]+phi[i];
48
 for(int i=1;i<maxn;i++)
49
 sum[i]=(sum[i-1]+(ll)i*d[i]%mod)%mod;
50
51
}
52
ll cal(ll n)
53
{
54
 if(n<maxn)
55
 return sum[n];
56
 if(w2.count(n)==1)
57
 return w2[n];
58
 ll ans=0;
59
 for(ll l=1,r;l<=n;l=r+1)
60
 {
61
 r=n/(n/l);
62
 ans+=((l+r)*(r-l+1)/2)%mod*((n/l)*(n/l+1)/2%mod)%mod;
63
 ans%=mod;
64
 }
65
 w2[n]=ans;
66
 return ans;
67
}
68
69
ll djsphi(ll x)
70
{
71
 if(x<maxn)
72
 return sum2[x];
73
 if(w1.count(x)==1)
74
 return w1[x];
75
 ll ans=(x)*(x+1)/2;
76
 for(ll l=2,r;l<=x;l=r+1)
77
 {
78
 r=x/(x/l);
79
 ans-=(r-l+1)*djsphi(x/l);
80
 }
81
 return w1[x]=ans;
82
}
83
ll qpow(ll a,ll n)
84
{
85
 ll ans=1;
86
 while(n)
87
 {
88
 if(n&1)
89
 ans=ans*a%mod;
90
 a=a*a%mod;
91
 n>>=1;
92
 }
关闭终端 终端 - 计蒜客


#include<bits/stdc++.h> using namespace std; const int maxn=5e6+10; typedef  long long ll; ll mod=1e9+7; bool vis[maxn]; int phi[maxn]; ll sum2[maxn]; ll sum[maxn]; ll d[maxn]; ll a[maxn]; int cnt,prim[maxn]; unordered_map<ll,ll>w1; unordered_map<ll,ll>w2; void get(int maxn) {     phi[1]=1;     d[1]=1;     for(int i=2;i<maxn;i++)     {         if(!vis[i])         {             d[i]=2;             a[i]=1;             prim[++cnt]=i;             phi[i]=i-1;         }         for(int j=1;j<=cnt&&prim[j]*i<maxn;j++)         {             vis[i*prim[j]]=1;             if(i%prim[j]==0)             {                 phi[i*prim[j]]=phi[i]*prim[j];                 d[i*prim[j]]=d[i]/(a[i]+1)*(a[i]+2);                 a[i*prim[j]]=a[i]+1;                 break;             }             else             {                 phi[i*prim[j]]=phi[i]*(prim[j]-1);                 d[i*prim[j]]=d[i]*d[prim[j]];                 a[i*prim[j]]=1;             }         }     }     for(int i=1;i<maxn;i++)         sum2[i]=sum2[i-1]+phi[i];     for(int i=1;i<maxn;i++)         sum[i]=(sum[i-1]+(ll)i*d[i]%mod)%mod;
} ll cal(ll n) {     if(n<maxn)        return sum[n];     if(w2.count(n)==1)         return w2[n];     ll ans=0;     for(ll l=1,r;l<=n;l=r+1)     {         r=n/(n/l);         ans+=((l+r)*(r-l+1)/2)%mod*((n/l)*(n/l+1)/2%mod)%mod;         ans%=mod;     }     w2[n]=ans;     return ans; }
ll djsphi(ll x) {     if(x<maxn)         return sum2[x];     if(w1.count(x)==1)         return w1[x];     ll ans=(x)*(x+1)/2;     for(ll l=2,r;l<=x;l=r+1)     {         r=x/(x/l);         ans-=(r-l+1)*djsphi(x/l);     }     return w1[x]=ans; } ll qpow(ll a,ll n) {     ll ans=1;     while(n)     {         if(n&1)             ans=ans*a%mod;         a=a*a%mod;         n>>=1;     }     return ans; } int main() {
    ll n,m,p;     cin>>n>>m>>p;     mod=p-1;     get(maxn);     ll ans=0;     for(ll l=1,r;l<=n;l=r+1)     {         r=n/(n/l);         ans+=(2*djsphi(n/l)%mod-1+mod)%mod*((cal(r)-cal(l-1)+mod)%mod)%mod;         ans%=mod;     }     mod=p;     printf("%lld",qpow(m,ans));     return 0; }