You are given positive integers n(n≤109),m(m≤2×109),p(p≤2×109)n ( n \le 10^9), m ( m \le 2 \times 10^9), p(p \le 2 \times 10^9)n(n≤109),m(m≤2×109),p(p≤2×109) and you need to calculate the following product modulo ppp.
∏i=1n∏j=1n∏k=1nmgcd(i,j)[k∣gcd(i,j)]\displaystyle \displaystyle\prod_{i = 1}^n \displaystyle\prod_{j = 1}^n \displaystyle\prod_{k = 1}^n m^{\gcd(i,j)[k|\gcd(i,j)]}i=1∏nj=1∏nk=1∏nmgcd(i,j)[k∣gcd(i,j)]
Input
Each test file contains a single test case. In each test file:
There are three positive integers n,m,pn, m, pn,m,p which are separated by spaces. It is guaranteed that ppp is a prime number.
Output
An integer representing your answer.
样例输入1复制
2 2 1000000007
样例输出1复制
128
样例输入2复制
233 131072 4894651
样例输出2复制
748517
样例输入3复制
1000000000 999999997 98765431
样例输出3复制
50078216
- main.cpp
- C++ 语言 (C++11)
- C++ 语言 (C++14)
- C 语言
- Java 语言
- Python 语言 (2.7)
- Python 语言 (3.5)
C++ 语言 (C++11) C++ 语言 (C++14) C 语言 Java 语言 Python 语言 (2.7) Python 语言 (3.5)
C++ 语言 (C++11)
返回
通用
逻辑
循环
数学
文本
列表
颜色
变量
函数
x
ans+=(2*djsphi(n/l)%mod-1+mod)%mod*((cal(r)-cal(l-1)+mod)%mod)%mod; 39
{ 40
phi[i*prim[j]]=phi[i]*(prim[j]-1); 41
d[i*prim[j]]=d[i]*d[prim[j]]; 42
a[i*prim[j]]=1; 43
} 44
} 45
} 46
for(int i=1;i<maxn;i++) 47
sum2[i]=sum2[i-1]+phi[i]; 48
for(int i=1;i<maxn;i++) 49
sum[i]=(sum[i-1]+(ll)i*d[i]%mod)%mod; 50
51
} 52
ll cal(ll n) 53
{ 54
if(n<maxn) 55
return sum[n]; 56
if(w2.count(n)==1) 57
return w2[n]; 58
ll ans=0; 59
for(ll l=1,r;l<=n;l=r+1) 60
{ 61
r=n/(n/l); 62
ans+=((l+r)*(r-l+1)/2)%mod*((n/l)*(n/l+1)/2%mod)%mod; 63
ans%=mod; 64
} 65
w2[n]=ans; 66
return ans; 67
} 68
69
ll djsphi(ll x) 70
{ 71
if(x<maxn) 72
return sum2[x]; 73
if(w1.count(x)==1) 74
return w1[x]; 75
ll ans=(x)*(x+1)/2; 76
for(ll l=2,r;l<=x;l=r+1) 77
{ 78
r=x/(x/l); 79
ans-=(r-l+1)*djsphi(x/l); 80
} 81
return w1[x]=ans; 82
} 83
ll qpow(ll a,ll n) 84
{ 85
ll ans=1; 86
while(n) 87
{ 88
if(n&1) 89
ans=ans*a%mod; 90
a=a*a%mod; 91
n>>=1; 92
} 关闭终端 终端 - 计蒜客
#include<bits/stdc++.h> using namespace std; const int maxn=5e6+10; typedef long long ll; ll mod=1e9+7; bool vis[maxn]; int phi[maxn]; ll sum2[maxn]; ll sum[maxn]; ll d[maxn]; ll a[maxn]; int cnt,prim[maxn]; unordered_map<ll,ll>w1; unordered_map<ll,ll>w2; void get(int maxn) { phi[1]=1; d[1]=1; for(int i=2;i<maxn;i++) { if(!vis[i]) { d[i]=2; a[i]=1; prim[++cnt]=i; phi[i]=i-1; } for(int j=1;j<=cnt&&prim[j]*i<maxn;j++) { vis[i*prim[j]]=1; if(i%prim[j]==0) { phi[i*prim[j]]=phi[i]*prim[j]; d[i*prim[j]]=d[i]/(a[i]+1)*(a[i]+2); a[i*prim[j]]=a[i]+1; break; } else { phi[i*prim[j]]=phi[i]*(prim[j]-1); d[i*prim[j]]=d[i]*d[prim[j]]; a[i*prim[j]]=1; } } } for(int i=1;i<maxn;i++) sum2[i]=sum2[i-1]+phi[i]; for(int i=1;i<maxn;i++) sum[i]=(sum[i-1]+(ll)i*d[i]%mod)%mod;} ll cal(ll n) { if(n<maxn) return sum[n]; if(w2.count(n)==1) return w2[n]; ll ans=0; for(ll l=1,r;l<=n;l=r+1) { r=n/(n/l); ans+=((l+r)*(r-l+1)/2)%mod*((n/l)*(n/l+1)/2%mod)%mod; ans%=mod; } w2[n]=ans; return ans; }ll djsphi(ll x) { if(x<maxn) return sum2[x]; if(w1.count(x)==1) return w1[x]; ll ans=(x)*(x+1)/2; for(ll l=2,r;l<=x;l=r+1) { r=x/(x/l); ans-=(r-l+1)*djsphi(x/l); } return w1[x]=ans; } ll qpow(ll a,ll n) { ll ans=1; while(n) { if(n&1) ans=ans*a%mod; a=a*a%mod; n>>=1; } return ans; } int main() {ll n,m,p; cin>>n>>m>>p; mod=p-1; get(maxn); ll ans=0; for(ll l=1,r;l<=n;l=r+1) { r=n/(n/l); ans+=(2*djsphi(n/l)%mod-1+mod)%mod*((cal(r)-cal(l-1)+mod)%mod)%mod; ans%=mod; } mod=p; printf("%lld",qpow(m,ans)); return 0; }

京公网安备 11010502036488号