树上子链
题目地址:
基本思路:
基本上类似树的直径的求法,
我们每次找子树中的次长链和最长链相连取最大就是了,
注意由于有负数的情况,可能取了次长链反而更不优,
所以要再对只取最长链的情况多取一个,
其余地方就和树的直径部分相差无几了。
参考代码:
#pragma GCC optimize(2) #pragma GCC optimize(3) #include <bits/stdc++.h> using namespace std; #define IO std::ios::sync_with_stdio(false); cin.tie(0) #define int long long #define SZ(x) ((int)(x).size()) #define all(x) (x).begin(), (x).end() #define rep(i, l, r) for (int i = l; i <= r; i++) #define per(i, l, r) for (int i = l; i >= r; i--) #define mset(s, _) memset(s, _, sizeof(s)) #define pb push_back #define pii pair <int, int> #define mp(a, b) make_pair(a, b) #define INF 0x3f3f3f3f inline int read() { int x = 0, neg = 1; char op = getchar(); while (!isdigit(op)) { if (op == '-') neg = -1; op = getchar(); } while (isdigit(op)) { x = 10 * x + op - '0'; op = getchar(); } return neg * x; } inline void print(int x) { if (x < 0) { putchar('-'); x = -x; } if (x >= 10) print(x / 10); putchar(x % 10 + '0'); } const int maxn = 1e5 + 10; struct Edge{ int to,next; }edge[maxn << 1]; int n,cnt,head[maxn],w[maxn]; void add_edge(int u,int v){ edge[++cnt].next = head[u]; edge[cnt].to = v; head[u] = cnt; } int dp[maxn],ans; void dfs(int u,int par) { dp[u] = w[u]; for (int i = head[u]; i != -1; i = edge[i].next) { int to = edge[i].to; if (to == par) continue; dfs(to, u); ans = max(ans, dp[u] + dp[to]); dp[u] = max(dp[u], dp[to] + w[u]); } ans = max(ans,dp[u]); } signed main() { IO; cnt = 0; mset(head,-1); cin >> n; rep(i,1,n) cin >> w[i]; for(int i = 1 ; i < n ; i++){ int u,v; cin >> u >> v; add_edge(u,v); add_edge(v,u); } ans = -INF; dfs(1,0); cout << ans << '\n'; return 0; }