ACboy has N courses this term, and he plans to spend at most M days on study.Of course,the profit he will gain from different course depending on the days he spend on it.How to arrange the M days for the N courses to maximize the profit?
Input
The input consists of multiple data sets. A data set starts with a line containing two positive integers N and M, N is the number of courses, M is the days ACboy has.
Next follow a matrix A[i][j], (1<=i<=N<=100,1<=j<=M<=100).A[i][j] indicates if ACboy spend j days on ith course he will get profit of value A[i][j].
N = 0 and M = 0 ends the input.
Output
For each data set, your program should output a line which contains the number of the max profit ACboy will gain.
Sample Input
2 2 1 2 1 3 2 2 2 1 2 1 2 3 3 2 1 3 2 1 0 0
Sample Output
3 4 6
题意:有n个课程,每个课程用不同的时间学习能得到不同的收获。求m天能得到的最大收获。给出的是矩阵形式,比如说第一个样例,是2行2列的矩阵,第一行为第一个课程,学习不同天的收获,第一行第一列那个数为学习第一个课程一天的收获,第二行第二列的那个数为学习第一个课程二天的收获,第二行为第二个课程,收获是多少——(同第一行的解释),这样应该懂了吧,不懂留言哦~
题解:抽象一下,背包容量相当于拥有的时间,然后给你若干组物品(课程),每一组物品里面有着若干个物品(课程时间),一组里面的物品只能选择一个,这么一抽象,标准的分组背包问题,模板题~~~详细见代码:
#include <iostream>
#include <cstring>
using namespace std;
const int MAX = 200;
int a[MAX][MAX],dp[MAX];
int main(){
int n,m;
while(cin >> n >> m,n+m){
memset(dp,0,sizeof(dp));
for (int i = 1; i <= n;i++){
for (int j = 1; j <= m;j++){
cin >> a[i][j];
}
}
for (int i = 1; i <= n;i++){
for (int j = m; j >= 0;j--){//容量循环
for (int k = 1; k <= m;k++){//个数循环
if(j-k>=0) dp[j]=max(dp[j],dp[j-k]+a[i][k]);//j-k判断,防止数组越界
}
}
}
cout << dp[m] << endl;
}
return 0;
}